Spaces:
Running
Running
File size: 19,511 Bytes
3fe0726 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
"""
Investment decision engine.
Combines all analyses to generate BUY/SELL/HOLD recommendations.
"""
import numpy as np
from typing import Dict, List, Tuple
from datetime import datetime
class InvestmentDecisionEngine:
"""Generates investment recommendations based on comprehensive analysis"""
def __init__(self,
financial_data: Dict,
fundamental_analysis: Dict,
sector_analysis: Dict,
valuation_analysis: Dict):
"""
Initialize decision engine
Args:
financial_data: Raw financial data
fundamental_analysis: Results from FinancialAnalyzer
sector_analysis: Results from SectorAnalyzer
valuation_analysis: Results from ValuationEngine
"""
self.ticker = financial_data.get('ticker')
self.company_info = financial_data.get('company_info', {})
self.current_price = financial_data.get('metrics', {}).get('current_price', 0)
self.fundamental = fundamental_analysis
self.sector = sector_analysis
self.valuation = valuation_analysis
self.score_weights = {
'fundamental': 0.35,
'sector': 0.25,
'valuation': 0.40
}
def score_fundamentals(self) -> Dict:
"""
Score company fundamentals (0-100)
Returns:
Fundamental scores and assessment
"""
scores = {}
# Growth score (0-25)
growth = self.fundamental.get('growth_analysis', {})
growth_quality = growth.get('growth_quality', 'Insufficient Data')
growth_scores = {
'Strong': 25, 'Good': 18, 'Moderate': 12,
'Weak': 5, 'Insufficient Data': 10
}
scores['growth'] = growth_scores.get(growth_quality, 10)
# Margin score (0-25)
margins = self.fundamental.get('margin_analysis', {})
margin_quality = margins.get('margin_quality', 'Insufficient Data')
margin_scores = {
'Excellent': 25, 'Good': 18, 'Moderate': 12,
'Weak': 5, 'Insufficient Data': 10
}
scores['margins'] = margin_scores.get(margin_quality, 10)
# Returns score (0-25)
returns = self.fundamental.get('returns_analysis', {})
returns_quality = returns.get('returns_quality', 'Insufficient Data')
returns_scores = {
'Excellent': 25, 'Good': 18, 'Moderate': 12,
'Weak': 5, 'Insufficient Data': 10
}
scores['returns'] = returns_scores.get(returns_quality, 10)
# Cash flow score (0-25)
cash_flow = self.fundamental.get('cash_flow_analysis', {})
cf_quality = cash_flow.get('cash_flow_quality', 'Insufficient Data')
cf_scores = {
'Excellent': 25, 'Good': 18, 'Moderate': 12,
'Weak': 5, 'Negative': 0, 'Insufficient Data': 10
}
scores['cash_flow'] = cf_scores.get(cf_quality, 10)
total_score = sum(scores.values())
return {
'scores': scores,
'total': total_score,
'max': 100,
'percentage': total_score,
'grade': self._get_grade(total_score),
'assessment': self._assess_fundamentals(total_score)
}
def score_sector_position(self) -> Dict:
"""
Score company's position within sector (0-100)
Returns:
Sector position scores and assessment
"""
scores = {}
# Sector sentiment (0-30)
sentiment = self.sector.get('sector_sentiment', {})
overall_sentiment = sentiment.get('overall_sentiment', 'Neutral')
if 'Positive' in overall_sentiment or 'tailwinds' in overall_sentiment:
scores['sector_sentiment'] = 30
elif 'Negative' in overall_sentiment or 'headwinds' in overall_sentiment:
scores['sector_sentiment'] = 10
else:
scores['sector_sentiment'] = 20
# Competitive position (0-35)
ranking = self.sector.get('sector_ranking', {})
overall_position = ranking.get('overall_position', 'Unknown')
position_scores = {
'Top 20%': 35, 'Top 40%': 25, 'Middle': 18,
'Bottom 40%': 10, 'Bottom 20%': 5, 'Unknown': 18
}
scores['competitive_position'] = position_scores.get(overall_position, 18)
# Relative profitability (0-20)
profitability_comp = self.sector.get('profitability_comparison', {})
prof_vs_sector = profitability_comp.get('profitability_vs_sector', 'Unknown')
prof_scores = {
'Top Performer': 20, 'Above Average': 15,
'Below Average': 8, 'Bottom Performer': 3, 'Unknown': 10
}
scores['relative_profitability'] = prof_scores.get(prof_vs_sector, 10)
# Relative growth (0-15)
growth_comp = self.sector.get('growth_comparison', {})
growth_vs_sector = growth_comp.get('growth_vs_sector', 'Unknown')
growth_scores = {
'Fast Grower': 15, 'Above Average Growth': 11,
'Below Average Growth': 6, 'Lagging Sector': 2, 'Unknown': 8
}
scores['relative_growth'] = growth_scores.get(growth_vs_sector, 8)
total_score = sum(scores.values())
return {
'scores': scores,
'total': total_score,
'max': 100,
'percentage': total_score,
'grade': self._get_grade(total_score),
'assessment': self._assess_sector_position(total_score, overall_sentiment)
}
def score_valuation(self) -> Dict:
"""
Score valuation attractiveness (0-100)
Returns:
Valuation scores and assessment
"""
scores = {}
# DCF valuation (0-40)
dcf = self.valuation.get('dcf_valuation', {})
dcf_upside = dcf.get('upside_percent', 0)
if 'error' not in dcf:
if dcf_upside > 30:
scores['dcf'] = 40
elif dcf_upside > 15:
scores['dcf'] = 30
elif dcf_upside > 0:
scores['dcf'] = 20
elif dcf_upside > -15:
scores['dcf'] = 10
else:
scores['dcf'] = 0
else:
scores['dcf'] = 20 # Neutral if DCF not applicable
# Relative valuation (0-40)
relative = self.valuation.get('relative_valuation', {})
avg_upside = relative.get('average_upside', 0)
if avg_upside != 0:
if avg_upside > 25:
scores['relative'] = 40
elif avg_upside > 10:
scores['relative'] = 30
elif avg_upside > 0:
scores['relative'] = 20
elif avg_upside > -15:
scores['relative'] = 10
else:
scores['relative'] = 0
else:
scores['relative'] = 20 # Neutral if not available
# Margin of safety (0-20)
mos = self.valuation.get('margin_of_safety', {})
dcf_mos = mos.get('dcf_margin_of_safety', {})
mos_percent = dcf_mos.get('margin_percent', 0)
if mos_percent > 30:
scores['margin_of_safety'] = 20
elif mos_percent > 20:
scores['margin_of_safety'] = 15
elif mos_percent > 10:
scores['margin_of_safety'] = 10
elif mos_percent > 0:
scores['margin_of_safety'] = 5
else:
scores['margin_of_safety'] = 0
total_score = sum(scores.values())
return {
'scores': scores,
'total': total_score,
'max': 100,
'percentage': total_score,
'grade': self._get_grade(total_score),
'assessment': self._assess_valuation(total_score)
}
def calculate_overall_score(self) -> Dict:
"""
Calculate weighted overall investment score
Returns:
Overall score and breakdown
"""
fundamental_score = self.score_fundamentals()
sector_score = self.score_sector_position()
valuation_score = self.score_valuation()
# Calculate weighted score
weighted_score = (
fundamental_score['percentage'] * self.score_weights['fundamental'] +
sector_score['percentage'] * self.score_weights['sector'] +
valuation_score['percentage'] * self.score_weights['valuation']
)
return {
'overall_score': weighted_score,
'max_score': 100,
'grade': self._get_grade(weighted_score),
'breakdown': {
'fundamental': {
'score': fundamental_score['percentage'],
'weight': self.score_weights['fundamental'],
'weighted_score': fundamental_score['percentage'] * self.score_weights['fundamental'],
'details': fundamental_score
},
'sector': {
'score': sector_score['percentage'],
'weight': self.score_weights['sector'],
'weighted_score': sector_score['percentage'] * self.score_weights['sector'],
'details': sector_score
},
'valuation': {
'score': valuation_score['percentage'],
'weight': self.score_weights['valuation'],
'weighted_score': valuation_score['percentage'] * self.score_weights['valuation'],
'details': valuation_score
}
}
}
def generate_recommendation(self) -> str:
"""
Generate BUY/SELL/HOLD recommendation
Returns:
Investment recommendation
"""
overall = self.calculate_overall_score()
score = overall['overall_score']
# Base recommendation on score
if score >= 70:
base_rec = "STRONG BUY"
elif score >= 60:
base_rec = "BUY"
elif score >= 50:
base_rec = "HOLD"
elif score >= 40:
base_rec = "SELL"
else:
base_rec = "STRONG SELL"
# Adjust based on specific red flags
red_flags = self.identify_red_flags()
if red_flags['critical_issues']:
if base_rec in ["STRONG BUY", "BUY"]:
base_rec = "HOLD"
elif base_rec == "HOLD":
base_rec = "SELL"
return base_rec
def identify_red_flags(self) -> Dict:
"""
Identify critical red flags
Returns:
Red flags and warnings
"""
red_flags = {
'critical_issues': [],
'warnings': [],
'positive_signs': []
}
# Check cash flow
cf_analysis = self.fundamental.get('cash_flow_analysis', {})
if cf_analysis.get('free_cash_flow', 0) < 0:
red_flags['critical_issues'].append("Negative free cash flow")
# Check earnings
growth = self.fundamental.get('growth_analysis', {})
if growth.get('net_income_growth_yoy', 0) < -0.10:
red_flags['warnings'].append("Declining earnings (>10% drop)")
# Check margins
margins = self.fundamental.get('margin_analysis', {})
if margins.get('operating_margin_trend', 0) < -0.02:
red_flags['warnings'].append("Contracting operating margins")
# Check debt
health = self.fundamental.get('financial_health', {})
interest_coverage = health.get('interest_coverage')
if interest_coverage and interest_coverage < 2:
red_flags['critical_issues'].append("Low interest coverage (<2x)")
# Check valuation
valuation_score = self.score_valuation()
if valuation_score['percentage'] < 25:
red_flags['warnings'].append("Expensive valuation")
# Check sector
sector_sentiment = self.sector.get('sector_sentiment', {})
if 'Negative' in sector_sentiment.get('overall_sentiment', ''):
red_flags['warnings'].append("Sector facing headwinds")
# Positive signs
if cf_analysis.get('fcf_positive_trend', False):
red_flags['positive_signs'].append("Growing free cash flow")
if margins.get('operating_leverage', False):
red_flags['positive_signs'].append("Expanding operating margins")
returns = self.fundamental.get('returns_analysis', {})
if returns.get('roic', 0) > 0.15:
red_flags['positive_signs'].append("Strong return on invested capital (>15%)")
return red_flags
def generate_confidence_score(self) -> Dict:
"""
Generate confidence level in recommendation
Returns:
Confidence metrics
"""
confidence_factors = []
# Data quality
fundamental = self.score_fundamentals()
if fundamental['grade'] != 'F':
confidence_factors.append(0.3)
# Sector data available
if self.sector.get('peer_count', 0) > 0:
confidence_factors.append(0.25)
# Valuation methods available
valuation = self.valuation.get('relative_valuation', {})
methods_available = sum([
'pe_valuation' in valuation,
'peg_valuation' in valuation,
'pb_valuation' in valuation
])
confidence_factors.append(methods_available * 0.15)
# Score consistency
overall = self.calculate_overall_score()
breakdown = overall['breakdown']
scores = [
breakdown['fundamental']['score'],
breakdown['sector']['score'],
breakdown['valuation']['score']
]
std_dev = np.std(scores)
if std_dev < 15: # Scores are consistent
confidence_factors.append(0.15)
confidence = sum(confidence_factors)
return {
'confidence_score': min(confidence, 1.0),
'confidence_level': self._get_confidence_level(confidence),
'factors': confidence_factors
}
def _get_grade(self, score: float) -> str:
"""Convert score to letter grade"""
if score >= 90:
return 'A+'
elif score >= 80:
return 'A'
elif score >= 70:
return 'B'
elif score >= 60:
return 'C'
elif score >= 50:
return 'D'
else:
return 'F'
def _get_confidence_level(self, confidence: float) -> str:
"""Convert confidence score to level"""
if confidence >= 0.8:
return "Very High"
elif confidence >= 0.6:
return "High"
elif confidence >= 0.4:
return "Moderate"
else:
return "Low"
def _assess_fundamentals(self, score: float) -> str:
"""Assess fundamental strength"""
if score >= 80:
return "Excellent fundamentals - Strong business"
elif score >= 60:
return "Good fundamentals - Solid business"
elif score >= 40:
return "Moderate fundamentals - Average business"
else:
return "Weak fundamentals - Concerning business"
def _assess_sector_position(self, score: float, sentiment: str) -> str:
"""Assess sector position"""
if score >= 70:
return f"Leading position in sector ({sentiment})"
elif score >= 50:
return f"Average position in sector ({sentiment})"
else:
return f"Weak position in sector ({sentiment})"
def _assess_valuation(self, score: float) -> str:
"""Assess valuation"""
if score >= 70:
return "Attractive valuation - Undervalued"
elif score >= 50:
return "Fair valuation - Reasonably priced"
elif score >= 30:
return "Full valuation - Fairly valued to slightly expensive"
else:
return "Expensive valuation - Overvalued"
def generate_investment_thesis(self) -> str:
"""
Generate investment thesis narrative
Returns:
Investment thesis text
"""
recommendation = self.generate_recommendation()
overall = self.calculate_overall_score()
red_flags = self.identify_red_flags()
thesis = []
# Opening
thesis.append(f"**{recommendation}** - Overall Score: {overall['overall_score']:.1f}/100 ({overall['grade']})")
thesis.append("")
# Fundamental assessment
fund_score = overall['breakdown']['fundamental']['details']
thesis.append(f"**Fundamentals ({fund_score['percentage']:.0f}/100):** {fund_score['assessment']}")
# Sector position
sector_score = overall['breakdown']['sector']['details']
thesis.append(f"**Sector Position ({sector_score['percentage']:.0f}/100):** {sector_score['assessment']}")
# Valuation
val_score = overall['breakdown']['valuation']['details']
thesis.append(f"**Valuation ({val_score['percentage']:.0f}/100):** {val_score['assessment']}")
thesis.append("")
# Key positives
if red_flags['positive_signs']:
thesis.append("**Key Strengths:**")
for sign in red_flags['positive_signs']:
thesis.append(f" ✓ {sign}")
thesis.append("")
# Key concerns
if red_flags['critical_issues'] or red_flags['warnings']:
thesis.append("**Key Concerns:**")
for issue in red_flags['critical_issues']:
thesis.append(f" ⚠ {issue}")
for warning in red_flags['warnings']:
thesis.append(f" • {warning}")
thesis.append("")
# Confidence
confidence = self.generate_confidence_score()
thesis.append(f"**Confidence Level:** {confidence['confidence_level']} ({confidence['confidence_score']*100:.0f}%)")
return "\n".join(thesis)
def generate_decision_report(self) -> Dict:
"""
Generate comprehensive investment decision report
Returns:
Complete decision analysis
"""
return {
'ticker': self.ticker,
'company_name': self.company_info.get('company_name', self.ticker),
'current_price': self.current_price,
'analysis_date': datetime.now().isoformat(),
'recommendation': self.generate_recommendation(),
'overall_score': self.calculate_overall_score(),
'confidence': self.generate_confidence_score(),
'red_flags': self.identify_red_flags(),
'investment_thesis': self.generate_investment_thesis()
}
if __name__ == "__main__":
print("This module is meant to be imported and used with results from other analyzers")
|