Spaces:
Running
Running
File size: 23,182 Bytes
3fe0726 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 |
"""
Investment Decision Maker
Main entry point: Input ticker β Output BUY/SELL/HOLD recommendation
Uses composite scoring based on institutional methodology
"""
import pandas as pd
import numpy as np
from typing import Dict, Tuple, Optional, List
from fundamental_analysis.calculator import calculate_metrics_for_ticker
from fundamental_analysis.sector_analyzer import SectorAnalyzer
import yfinance as yf
import warnings
warnings.filterwarnings('ignore')
class InvestmentDecision:
"""Make BUY/SELL/HOLD decisions based on comprehensive analysis"""
# Scoring weights based on institutional methodology
WEIGHTS = {
'fcf_yield': 0.25, # 25% - HIGHEST priority
'roic': 0.25, # 25% - Quality indicator
'growth': 0.15, # 15% - Growth metrics
'valuation': 0.15, # 15% - Valuation ratios
'leverage': 0.10, # 10% - Financial health
'capital_allocation': 0.10 # 10% - Capital management
}
# Decision thresholds
THRESHOLDS = {
'buy': 0.35, # Score >= 0.35 β BUY
'sell': -0.10 # Score < -0.10 β SELL
}
def __init__(self, ticker: str, compare_to_sector: bool = True):
"""
Initialize decision maker
Args:
ticker: Stock ticker symbol
compare_to_sector: Whether to compare against sector peers
"""
self.ticker = ticker.upper()
self.compare_to_sector = compare_to_sector
self.metrics_df = pd.DataFrame()
self.metrics_dict = {}
self.sector_comparison = pd.DataFrame()
self.sector_percentiles = {}
self.scores = {}
self.final_score = 0.0
self.recommendation = "HOLD"
self.confidence = 0.0
self.reasoning = []
def analyze(self) -> Dict:
"""
Perform complete analysis and generate recommendation
Returns:
Dictionary with recommendation and detailed analysis
"""
print(f"\n{'='*80}")
print(f"INVESTMENT ANALYSIS: {self.ticker}")
print(f"{'='*80}\n")
# Step 1: Calculate all metrics
print("Step 1: Calculating financial metrics...")
self.metrics_df, summary = calculate_metrics_for_ticker(self.ticker)
if self.metrics_df.empty:
return self._error_result("Failed to fetch data")
# Convert metrics to dictionary for easier access
self._build_metrics_dict()
# Step 2: Get sector comparison
if self.compare_to_sector:
print("\nStep 2: Comparing to sector peers...")
self._compare_to_sector()
else:
print("\nStep 2: Skipping sector comparison")
# Step 3: Score each category
print("\nStep 3: Scoring investment criteria...")
self._score_all_categories()
# Step 4: Calculate final score and recommendation
print("\nStep 4: Generating recommendation...")
self._calculate_final_score()
self._determine_recommendation()
# Step 5: Build reasoning
self._build_reasoning()
# Return complete analysis
return self._build_result()
def _build_metrics_dict(self):
"""Convert metrics DataFrame to dictionary for easier access"""
for _, row in self.metrics_df.iterrows():
if row['Status'] == 'Available':
metric_name = row['Metric'].replace(' ', '_').replace('/', '_').replace('(', '').replace(')', '').replace('%', 'pct')
self.metrics_dict[metric_name] = row['Value']
def _get_metric(self, metric_name: str) -> Optional[float]:
"""Safely get metric value"""
row = self.metrics_df[self.metrics_df['Metric'] == metric_name]
if not row.empty and row.iloc[0]['Status'] == 'Available':
return row.iloc[0]['Value']
return None
def _compare_to_sector(self):
"""Compare stock to sector peers"""
try:
# Get company info to determine sector
stock = yf.Ticker(self.ticker)
info = stock.info
sector = info.get('sector', 'Unknown')
if sector == 'Unknown':
print(" β Could not determine sector, skipping comparison")
return
print(f" Sector: {sector}")
# Map yfinance sectors to our predefined sectors
sector_mapping = {
'Technology': 'Technology',
'Financial Services': 'Financial',
'Healthcare': 'Healthcare',
'Consumer Cyclical': 'Consumer',
'Consumer Defensive': 'Consumer',
'Industrials': 'Industrial',
'Energy': 'Energy',
'Basic Materials': 'Materials',
'Real Estate': 'Real Estate',
'Communication Services': 'Communication'
}
mapped_sector = sector_mapping.get(sector)
if not mapped_sector:
print(f" β Sector '{sector}' not in predefined list")
return
# Analyze sector with a subset of stocks (to avoid long wait)
analyzer = SectorAnalyzer(mapped_sector)
tickers = analyzer.get_sector_tickers()
# Limit to 10 stocks for faster analysis
if len(tickers) > 10:
tickers = tickers[:10]
print(f" Analyzing {len(tickers)} peer stocks (limited sample)...")
comparison_df = analyzer.calculate_sector_metrics(tickers)
if not comparison_df.empty and self.ticker in comparison_df.index:
self.sector_comparison = analyzer.compare_stock_to_peers(self.ticker, comparison_df)
self.sector_percentiles = comparison_df.rank(pct=True).loc[self.ticker].to_dict()
print(f" β Sector comparison complete")
else:
print(f" β Could not compare to sector")
except Exception as e:
print(f" β Sector comparison error: {str(e)}")
def _score_all_categories(self):
"""Score each investment category"""
self.scores['fcf_yield'] = self._score_fcf_yield()
self.scores['roic'] = self._score_roic()
self.scores['growth'] = self._score_growth()
self.scores['valuation'] = self._score_valuation()
self.scores['leverage'] = self._score_leverage()
self.scores['capital_allocation'] = self._score_capital_allocation()
# Print scores
for category, score in self.scores.items():
print(f" {category.replace('_', ' ').title()}: {score:+.2f}")
def _score_fcf_yield(self) -> float:
"""
Score FCF Yield (HIGHEST PRIORITY - 25% weight)
Threshold: >6% = BUY, 4-6% = HOLD, <3% = SELL
"""
fcf_yield = self._get_metric('FCF Yield (Enterprise) %')
if fcf_yield is None:
return 0.0
# Scoring rules
if fcf_yield >= 6.0:
score = 1.0 # Strong buy signal
elif fcf_yield >= 4.0:
score = 0.5 # Hold
elif fcf_yield >= 3.0:
score = 0.0 # Neutral
else:
score = -1.0 # Sell signal
# Adjust based on sector percentile if available
if 'FCF_Yield_%' in self.sector_percentiles:
percentile = self.sector_percentiles['FCF_Yield_%']
if percentile > 0.75:
score += 0.3 # Top quartile bonus
elif percentile < 0.25:
score -= 0.3 # Bottom quartile penalty
return np.clip(score, -1.0, 1.0)
def _score_roic(self) -> float:
"""
Score ROIC (VERY HIGH PRIORITY - 25% weight)
Threshold: >15% = excellent, >10% = good, <10% = concern
"""
roic = self._get_metric('Return on Invested Capital (ROIC) %')
if roic is None:
return 0.0
# Scoring rules
if roic >= 20.0:
score = 1.0 # Exceptional
elif roic >= 15.0:
score = 0.7 # Excellent
elif roic >= 10.0:
score = 0.3 # Good
elif roic >= 5.0:
score = -0.3 # Mediocre
else:
score = -1.0 # Poor
# Adjust based on sector percentile
if 'ROIC_%' in self.sector_percentiles:
percentile = self.sector_percentiles['ROIC_%']
if percentile > 0.75:
score += 0.2
elif percentile < 0.25:
score -= 0.2
return np.clip(score, -1.0, 1.0)
def _score_growth(self) -> float:
"""
Score Growth Metrics (15% weight)
Revenue growth, EPS growth
"""
rev_growth = self._get_metric('Revenue Growth (YoY) %')
eps_growth = self._get_metric('EPS Growth (YoY) %')
if rev_growth is None and eps_growth is None:
return 0.0
scores = []
# Revenue growth scoring
if rev_growth is not None:
if rev_growth >= 20.0:
scores.append(1.0)
elif rev_growth >= 10.0:
scores.append(0.5)
elif rev_growth >= 5.0:
scores.append(0.2)
elif rev_growth >= 0.0:
scores.append(-0.2)
else:
scores.append(-1.0) # Declining revenue
# EPS growth scoring
if eps_growth is not None:
if eps_growth >= 20.0:
scores.append(1.0)
elif eps_growth >= 10.0:
scores.append(0.5)
elif eps_growth >= 5.0:
scores.append(0.2)
elif eps_growth >= 0.0:
scores.append(-0.2)
else:
scores.append(-1.0)
return np.clip(np.mean(scores) if scores else 0.0, -1.0, 1.0)
def _score_valuation(self) -> float:
"""
Score Valuation Metrics (15% weight)
P/E, PEG, EV/EBITDA relative to sector
"""
pe_ratio = self._get_metric('P/E Ratio (TTM)')
peg_ratio = self._get_metric('PEG Ratio')
ev_ebitda = self._get_metric('EV/EBITDA')
scores = []
# PEG ratio scoring (most important valuation metric)
if peg_ratio is not None:
if peg_ratio < 0.8:
scores.append(1.0) # Undervalued
elif peg_ratio < 1.2:
scores.append(0.3) # Fair value
elif peg_ratio < 1.5:
scores.append(-0.3) # Slightly expensive
else:
scores.append(-1.0) # Overvalued
# P/E relative to sector
if 'PE_Ratio' in self.sector_percentiles:
percentile = self.sector_percentiles['PE_Ratio']
# Lower P/E is better (reverse percentile)
if percentile < 0.33:
scores.append(0.7) # Cheap relative to sector
elif percentile < 0.67:
scores.append(0.0) # Fair
else:
scores.append(-0.7) # Expensive
# EV/EBITDA relative to sector
if 'EV_EBITDA' in self.sector_percentiles:
percentile = self.sector_percentiles['EV_EBITDA']
# Lower is better
if percentile < 0.33:
scores.append(0.5)
elif percentile > 0.67:
scores.append(-0.5)
return np.clip(np.mean(scores) if scores else 0.0, -1.0, 1.0)
def _score_leverage(self) -> float:
"""
Score Leverage/Financial Health (10% weight)
Net Debt/EBITDA, Interest Coverage
"""
net_debt_ebitda = self._get_metric('Net Debt / EBITDA')
current_ratio = self._get_metric('Current Ratio')
cash_conversion = self._get_metric('Cash Conversion Ratio')
scores = []
# Net Debt/EBITDA scoring
if net_debt_ebitda is not None:
if net_debt_ebitda < 1.0:
scores.append(1.0) # Very low leverage
elif net_debt_ebitda < 2.0:
scores.append(0.5) # Moderate
elif net_debt_ebitda < 3.0:
scores.append(0.0) # Acceptable
elif net_debt_ebitda < 4.0:
scores.append(-0.5) # High
else:
scores.append(-1.0) # Very high risk
# Current ratio
if current_ratio is not None:
if current_ratio >= 2.0:
scores.append(0.5)
elif current_ratio >= 1.5:
scores.append(0.2)
elif current_ratio >= 1.0:
scores.append(-0.2)
else:
scores.append(-0.5)
# Cash conversion (quality of earnings)
if cash_conversion is not None:
if cash_conversion >= 1.2:
scores.append(0.5)
elif cash_conversion >= 1.0:
scores.append(0.2)
elif cash_conversion >= 0.8:
scores.append(-0.2)
else:
scores.append(-0.5) # Red flag
return np.clip(np.mean(scores) if scores else 0.0, -1.0, 1.0)
def _score_capital_allocation(self) -> float:
"""
Score Capital Allocation (10% weight)
Dividends, buybacks, total payout ratio
"""
payout_ratio = self._get_metric('Payout Ratio %')
total_payout = self._get_metric('Total Payout Ratio %')
roe = self._get_metric('Return on Equity (ROE) %')
scores = []
# Payout ratio - should be sustainable
if payout_ratio is not None:
if payout_ratio < 40.0:
scores.append(0.5) # Low, room to grow
elif payout_ratio < 60.0:
scores.append(0.3) # Sustainable
elif payout_ratio < 80.0:
scores.append(-0.2) # High
else:
scores.append(-0.5) # Potentially unsustainable
# Total payout (dividends + buybacks)
if total_payout is not None and roe is not None:
# Good capital allocation returns cash to shareholders while maintaining high ROE
if roe > 15.0 and total_payout > 50.0:
scores.append(0.5) # Strong returns + returning cash
elif roe > 15.0:
scores.append(0.3) # Strong returns, could return more
elif total_payout > 50.0:
scores.append(-0.3) # Returning cash but weak returns
return np.clip(np.mean(scores) if scores else 0.0, -1.0, 1.0)
def _calculate_final_score(self):
"""Calculate weighted final score"""
self.final_score = sum(
self.scores.get(category, 0.0) * weight
for category, weight in self.WEIGHTS.items()
)
# Calculate confidence based on data availability and sector comparison
data_completeness = len([s for s in self.scores.values() if s != 0.0]) / len(self.scores)
sector_bonus = 0.15 if not self.sector_comparison.empty else 0.0
self.confidence = min(data_completeness + sector_bonus, 1.0)
def _determine_recommendation(self):
"""Determine BUY/SELL/HOLD based on final score"""
if self.final_score >= self.THRESHOLDS['buy']:
self.recommendation = "BUY"
elif self.final_score < self.THRESHOLDS['sell']:
self.recommendation = "SELL"
else:
self.recommendation = "HOLD"
def _build_reasoning(self):
"""Build human-readable reasoning for the recommendation"""
self.reasoning = []
# Overall assessment
if self.final_score >= 0.5:
self.reasoning.append("β Strong overall fundamentals")
elif self.final_score >= 0.2:
self.reasoning.append("β Positive fundamentals")
elif self.final_score >= -0.2:
self.reasoning.append("β’ Mixed fundamentals")
else:
self.reasoning.append("β Weak fundamentals")
# FCF Yield
fcf_yield = self._get_metric('FCF Yield (Enterprise) %')
if fcf_yield:
if fcf_yield >= 6.0:
self.reasoning.append(f"β Excellent FCF yield: {fcf_yield:.2f}%")
elif fcf_yield < 3.0:
self.reasoning.append(f"β Low FCF yield: {fcf_yield:.2f}%")
# ROIC
roic = self._get_metric('Return on Invested Capital (ROIC) %')
if roic:
if roic >= 15.0:
self.reasoning.append(f"β Strong ROIC: {roic:.2f}%")
elif roic < 10.0:
self.reasoning.append(f"β Weak ROIC: {roic:.2f}%")
# Growth
rev_growth = self._get_metric('Revenue Growth (YoY) %')
if rev_growth:
if rev_growth >= 15.0:
self.reasoning.append(f"β Strong revenue growth: {rev_growth:.2f}%")
elif rev_growth < 0:
self.reasoning.append(f"β Declining revenue: {rev_growth:.2f}%")
# Valuation
peg_ratio = self._get_metric('PEG Ratio')
if peg_ratio:
if peg_ratio < 0.8:
self.reasoning.append(f"β Undervalued (PEG: {peg_ratio:.2f})")
elif peg_ratio > 1.5:
self.reasoning.append(f"β Overvalued (PEG: {peg_ratio:.2f})")
# Leverage
net_debt_ebitda = self._get_metric('Net Debt / EBITDA')
if net_debt_ebitda is not None:
if net_debt_ebitda < 1.0:
self.reasoning.append(f"β Low leverage: {net_debt_ebitda:.2f}x")
elif net_debt_ebitda > 3.0:
self.reasoning.append(f"β High leverage: {net_debt_ebitda:.2f}x")
# Sector comparison
if 'ROIC_%' in self.sector_percentiles:
roic_pct = self.sector_percentiles['ROIC_%']
if roic_pct > 0.75:
self.reasoning.append(f"β Top quartile ROIC vs peers (P{int(roic_pct*100)})")
elif roic_pct < 0.25:
self.reasoning.append(f"β Bottom quartile ROIC vs peers (P{int(roic_pct*100)})")
def _build_result(self) -> Dict:
"""Build final result dictionary"""
return {
'ticker': self.ticker,
'recommendation': self.recommendation,
'final_score': self.final_score,
'confidence': self.confidence,
'category_scores': self.scores,
'reasoning': self.reasoning,
'key_metrics': {
'FCF_Yield_%': self._get_metric('FCF Yield (Enterprise) %'),
'ROIC_%': self._get_metric('Return on Invested Capital (ROIC) %'),
'ROE_%': self._get_metric('Return on Equity (ROE) %'),
'Revenue_Growth_%': self._get_metric('Revenue Growth (YoY) %'),
'PEG_Ratio': self._get_metric('PEG Ratio'),
'Net_Debt_EBITDA': self._get_metric('Net Debt / EBITDA'),
},
'sector_percentiles': self.sector_percentiles if self.sector_percentiles else None
}
def _error_result(self, error_message: str) -> Dict:
"""Return error result"""
return {
'ticker': self.ticker,
'recommendation': 'ERROR',
'error': error_message,
'final_score': 0.0,
'confidence': 0.0
}
def print_analysis(self, result: Dict):
"""Print formatted analysis report"""
print(f"\n{'='*80}")
print(f"INVESTMENT RECOMMENDATION: {result['ticker']}")
print(f"{'='*80}")
if result['recommendation'] == 'ERROR':
print(f"\nβ ERROR: {result.get('error', 'Unknown error')}")
return
# Recommendation with color coding
rec = result['recommendation']
if rec == 'BUY':
print(f"\nπ’ RECOMMENDATION: {rec} (Score: {result['final_score']:+.2f})")
elif rec == 'SELL':
print(f"\nπ΄ RECOMMENDATION: {rec} (Score: {result['final_score']:+.2f})")
else:
print(f"\nπ‘ RECOMMENDATION: {rec} (Score: {result['final_score']:+.2f})")
print(f"Confidence: {result['confidence']:.0%}")
# Category scores
print(f"\n{'-'*80}")
print("CATEGORY SCORES (weighted)")
print(f"{'-'*80}")
for category, score in result['category_scores'].items():
weight = self.WEIGHTS[category]
weighted_score = score * weight
bar_length = int(abs(score) * 20)
bar = 'β' * bar_length
print(f"{category.replace('_', ' ').title():25} {score:+.2f} ({weight:.0%}) β {weighted_score:+.3f} {bar}")
# Key metrics
print(f"\n{'-'*80}")
print("KEY METRICS")
print(f"{'-'*80}")
for metric, value in result['key_metrics'].items():
if value is not None:
print(f"{metric:30} {value:>12.2f}")
# Reasoning
print(f"\n{'-'*80}")
print("INVESTMENT RATIONALE")
print(f"{'-'*80}")
for reason in result['reasoning']:
print(f" {reason}")
print(f"\n{'='*80}\n")
def evaluate_stock(ticker: str, compare_to_sector: bool = True) -> Dict:
"""
Main function to evaluate a stock and get recommendation
Args:
ticker: Stock ticker symbol
compare_to_sector: Whether to compare to sector peers
Returns:
Dictionary with recommendation and analysis
"""
decision = InvestmentDecision(ticker, compare_to_sector)
result = decision.analyze()
decision.print_analysis(result)
return result
if __name__ == "__main__":
# Test with sample tickers
test_tickers = ['AAPL', 'GOOGL', 'MSFT']
print("INVESTMENT DECISION MAKER TEST")
print("=" * 80)
results = []
for ticker in test_tickers:
result = evaluate_stock(ticker, compare_to_sector=False) # Disable sector for speed
results.append(result)
# Summary comparison
print("\n" + "=" * 80)
print("SUMMARY COMPARISON")
print("=" * 80)
summary_df = pd.DataFrame([{
'Ticker': r['ticker'],
'Recommendation': r['recommendation'],
'Score': r['final_score'],
'Confidence': r['confidence'],
'FCF Yield %': r['key_metrics']['FCF_Yield_%'],
'ROIC %': r['key_metrics']['ROIC_%'],
'PEG': r['key_metrics']['PEG_Ratio']
} for r in results])
print(summary_df.to_string(index=False))
# Save results
summary_df.to_csv('investment_recommendations.csv', index=False)
print(f"\nβ Results saved to investment_recommendations.csv")
|