File size: 16,578 Bytes
3fe0726
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
"""
Financial analysis engine for fundamental metrics.
Calculates growth, margins, returns, and cash flow metrics.
"""

import pandas as pd
import numpy as np
from typing import Dict, Optional, Tuple, List
from datetime import datetime


class FinancialAnalyzer:
    """Analyzes financial statements and calculates key metrics"""
    
    def __init__(self, financial_data: Dict):
        """
        Initialize analyzer with fetched financial data
        
        Args:
            financial_data: Complete dataset from FinancialDataFetcher
        """
        self.data = financial_data
        self.ticker = financial_data.get('ticker')
        self.metrics = financial_data.get('metrics', {})
        self.statements = financial_data.get('financial_statements', {})
        self.company_info = financial_data.get('company_info', {})
        
    def analyze_growth(self) -> Dict:
        """
        Analyze revenue and earnings growth trends
        
        Returns:
            Dictionary with growth metrics
        """
        results = {
            'revenue_growth_ttm': self.metrics.get('revenue_growth'),
            'earnings_growth_ttm': self.metrics.get('earnings_growth'),
        }
        
        # Calculate historical growth from income statement
        try:
            income_stmt = self.statements.get('income_statement')
            if income_stmt is not None and not income_stmt.empty:
                
                # Revenue growth (most recent vs 1 year ago)
                if 'Total Revenue' in income_stmt.index:
                    revenues = income_stmt.loc['Total Revenue'].values
                    if len(revenues) >= 2:
                        results['revenue_growth_yoy'] = ((revenues[0] - revenues[1]) / abs(revenues[1])) if revenues[1] != 0 else None
                        
                        # 3-year CAGR if available
                        if len(revenues) >= 3:
                            years = min(len(revenues) - 1, 3)
                            cagr = (revenues[0] / revenues[years]) ** (1/years) - 1 if revenues[years] != 0 else None
                            results['revenue_cagr_3y'] = cagr
                
                # Net income growth
                if 'Net Income' in income_stmt.index:
                    net_incomes = income_stmt.loc['Net Income'].values
                    if len(net_incomes) >= 2:
                        # Handle negative values
                        if net_incomes[1] != 0:
                            results['net_income_growth_yoy'] = ((net_incomes[0] - net_incomes[1]) / abs(net_incomes[1]))
        except Exception as e:
            print(f"Error calculating historical growth: {e}")
        
        # Growth assessment
        revenue_growth = results.get('revenue_growth_yoy') or results.get('revenue_growth_ttm')
        earnings_growth = results.get('net_income_growth_yoy') or results.get('earnings_growth_ttm')
        
        results['growth_quality'] = self._assess_growth_quality(revenue_growth, earnings_growth)
        
        return results
    
    def analyze_margins(self) -> Dict:
        """
        Analyze profitability margins and trends
        
        Returns:
            Dictionary with margin metrics
        """
        results = {
            'gross_margin': self.metrics.get('gross_margin'),
            'operating_margin': self.metrics.get('operating_margin'),
            'profit_margin': self.metrics.get('profit_margin'),
            'ebitda_margin': self.metrics.get('ebitda_margin'),
        }
        
        # Calculate margin trends from income statement
        try:
            income_stmt = self.statements.get('income_statement')
            if income_stmt is not None and not income_stmt.empty:
                
                # Calculate margins for multiple periods
                if 'Total Revenue' in income_stmt.index:
                    revenues = income_stmt.loc['Total Revenue'].values
                    
                    # Gross margin trend
                    if 'Gross Profit' in income_stmt.index and len(revenues) >= 2:
                        gross_profits = income_stmt.loc['Gross Profit'].values
                        margins = [gp / rev if rev != 0 else None for gp, rev in zip(gross_profits, revenues)]
                        margins = [m for m in margins if m is not None]
                        
                        if len(margins) >= 2:
                            results['gross_margin_current'] = margins[0]
                            results['gross_margin_trend'] = margins[0] - margins[1]
                            results['gross_margin_stable'] = abs(margins[0] - margins[1]) < 0.02  # Within 2%
                    
                    # Operating margin trend
                    if 'Operating Income' in income_stmt.index and len(revenues) >= 2:
                        op_incomes = income_stmt.loc['Operating Income'].values
                        margins = [oi / rev if rev != 0 else None for oi, rev in zip(op_incomes, revenues)]
                        margins = [m for m in margins if m is not None]
                        
                        if len(margins) >= 2:
                            results['operating_margin_current'] = margins[0]
                            results['operating_margin_trend'] = margins[0] - margins[1]
                            results['operating_leverage'] = margins[0] > margins[1]  # Expanding margins
                    
                    # Net margin trend
                    if 'Net Income' in income_stmt.index and len(revenues) >= 2:
                        net_incomes = income_stmt.loc['Net Income'].values
                        margins = [ni / rev if rev != 0 else None for ni, rev in zip(net_incomes, revenues)]
                        margins = [m for m in margins if m is not None]
                        
                        if len(margins) >= 2:
                            results['net_margin_current'] = margins[0]
                            results['net_margin_trend'] = margins[0] - margins[1]
        
        except Exception as e:
            print(f"Error calculating margin trends: {e}")
        
        # Margin assessment
        results['margin_quality'] = self._assess_margin_quality(results)
        
        return results
    
    def analyze_returns(self) -> Dict:
        """
        Analyze return on capital metrics
        
        Returns:
            Dictionary with return metrics
        """
        results = {
            'roe': self.metrics.get('return_on_equity'),
            'roa': self.metrics.get('return_on_assets'),
        }
        
        # Calculate ROIC (Return on Invested Capital)
        try:
            income_stmt = self.statements.get('income_statement')
            balance_sheet = self.statements.get('balance_sheet')
            
            if income_stmt is not None and balance_sheet is not None:
                if not income_stmt.empty and not balance_sheet.empty:
                    
                    # NOPAT = Net Operating Profit After Tax
                    if 'Operating Income' in income_stmt.index and 'Tax Provision' in income_stmt.index:
                        op_income = income_stmt.loc['Operating Income'].iloc[0]
                        total_revenue = income_stmt.loc['Total Revenue'].iloc[0] if 'Total Revenue' in income_stmt.index else 1
                        tax_provision = income_stmt.loc['Tax Provision'].iloc[0]
                        
                        # Estimate tax rate
                        pretax_income = income_stmt.loc['Pretax Income'].iloc[0] if 'Pretax Income' in income_stmt.index else op_income
                        tax_rate = abs(tax_provision / pretax_income) if pretax_income != 0 else 0.21
                        
                        nopat = op_income * (1 - tax_rate)
                        
                        # Invested Capital = Total Debt + Total Equity - Cash
                        total_debt = self.metrics.get('total_debt', 0)
                        total_assets = balance_sheet.loc['Total Assets'].iloc[0] if 'Total Assets' in balance_sheet.index else 0
                        total_liabilities = balance_sheet.loc['Total Liabilities Net Minority Interest'].iloc[0] if 'Total Liabilities Net Minority Interest' in balance_sheet.index else 0
                        equity = total_assets - total_liabilities
                        cash = self.metrics.get('total_cash', 0)
                        
                        invested_capital = total_debt + equity - cash
                        
                        if invested_capital > 0:
                            results['roic'] = nopat / invested_capital
        
        except Exception as e:
            print(f"Error calculating ROIC: {e}")
        
        # Returns assessment
        results['returns_quality'] = self._assess_returns_quality(results)
        
        return results
    
    def analyze_cash_flow(self) -> Dict:
        """
        Analyze cash flow metrics
        
        Returns:
            Dictionary with cash flow metrics
        """
        results = {
            'operating_cash_flow': self.metrics.get('operating_cash_flow', 0),
            'free_cash_flow': self.metrics.get('free_cash_flow', 0),
        }
        
        # Calculate FCF margin and conversion
        try:
            income_stmt = self.statements.get('income_statement')
            cashflow_stmt = self.statements.get('cash_flow')
            
            if income_stmt is not None and not income_stmt.empty:
                revenue = income_stmt.loc['Total Revenue'].iloc[0] if 'Total Revenue' in income_stmt.index else 0
                net_income = income_stmt.loc['Net Income'].iloc[0] if 'Net Income' in income_stmt.index else 0
                
                if revenue > 0:
                    results['fcf_margin'] = results['free_cash_flow'] / revenue
                    results['ocf_margin'] = results['operating_cash_flow'] / revenue
                
                if net_income != 0:
                    results['fcf_conversion'] = results['free_cash_flow'] / net_income
            
            # Cash flow trend
            if cashflow_stmt is not None and not cashflow_stmt.empty:
                if 'Free Cash Flow' in cashflow_stmt.index:
                    fcf_values = cashflow_stmt.loc['Free Cash Flow'].values
                    if len(fcf_values) >= 2:
                        results['fcf_growth'] = ((fcf_values[0] - fcf_values[1]) / abs(fcf_values[1])) if fcf_values[1] != 0 else None
                        results['fcf_positive_trend'] = fcf_values[0] > fcf_values[1]
        
        except Exception as e:
            print(f"Error calculating cash flow metrics: {e}")
        
        # Cash flow assessment
        results['cash_flow_quality'] = self._assess_cash_flow_quality(results)
        
        return results
    
    def analyze_financial_health(self) -> Dict:
        """
        Analyze financial health and leverage
        
        Returns:
            Dictionary with financial health metrics
        """
        results = {
            'total_cash': self.metrics.get('total_cash', 0),
            'total_debt': self.metrics.get('total_debt', 0),
            'debt_to_equity': self.metrics.get('debt_to_equity'),
            'current_ratio': self.metrics.get('current_ratio'),
            'quick_ratio': self.metrics.get('quick_ratio'),
        }
        
        # Calculate net debt
        results['net_debt'] = results['total_debt'] - results['total_cash']
        
        # Calculate interest coverage
        try:
            income_stmt = self.statements.get('income_statement')
            if income_stmt is not None and not income_stmt.empty:
                if 'Operating Income' in income_stmt.index and 'Interest Expense' in income_stmt.index:
                    op_income = income_stmt.loc['Operating Income'].iloc[0]
                    interest = abs(income_stmt.loc['Interest Expense'].iloc[0])
                    
                    if interest > 0:
                        results['interest_coverage'] = op_income / interest
        
        except Exception as e:
            print(f"Error calculating interest coverage: {e}")
        
        # Health assessment
        results['financial_health_quality'] = self._assess_financial_health(results)
        
        return results
    
    def _assess_growth_quality(self, revenue_growth: Optional[float], earnings_growth: Optional[float]) -> str:
        """Assess growth quality"""
        if revenue_growth is None or earnings_growth is None:
            return "Insufficient Data"
        
        if revenue_growth > 0.15 and earnings_growth > 0.15:
            return "Strong"
        elif revenue_growth > 0.08 and earnings_growth > 0.08:
            return "Good"
        elif revenue_growth > 0 and earnings_growth > 0:
            return "Moderate"
        else:
            return "Weak"
    
    def _assess_margin_quality(self, margins: Dict) -> str:
        """Assess margin quality"""
        operating_margin = margins.get('operating_margin_current') or margins.get('operating_margin')
        margin_trend = margins.get('operating_margin_trend')
        
        if operating_margin is None:
            return "Insufficient Data"
        
        if operating_margin > 0.20 and (margin_trend is None or margin_trend >= 0):
            return "Excellent"
        elif operating_margin > 0.10 and (margin_trend is None or margin_trend >= 0):
            return "Good"
        elif operating_margin > 0.05:
            return "Moderate"
        else:
            return "Weak"
    
    def _assess_returns_quality(self, returns: Dict) -> str:
        """Assess returns quality"""
        roe = returns.get('roe')
        roic = returns.get('roic')
        
        primary_return = roic if roic is not None else roe
        
        if primary_return is None:
            return "Insufficient Data"
        
        if primary_return > 0.20:
            return "Excellent"
        elif primary_return > 0.15:
            return "Good"
        elif primary_return > 0.10:
            return "Moderate"
        else:
            return "Weak"
    
    def _assess_cash_flow_quality(self, cash_flow: Dict) -> str:
        """Assess cash flow quality"""
        fcf = cash_flow.get('free_cash_flow', 0)
        fcf_conversion = cash_flow.get('fcf_conversion')
        
        if fcf <= 0:
            return "Negative"
        
        if fcf_conversion and fcf_conversion > 1.0:
            return "Excellent"
        elif fcf_conversion and fcf_conversion > 0.8:
            return "Good"
        elif fcf > 0:
            return "Moderate"
        else:
            return "Weak"
    
    def _assess_financial_health(self, health: Dict) -> str:
        """Assess financial health"""
        net_debt = health.get('net_debt', 0)
        current_ratio = health.get('current_ratio')
        interest_coverage = health.get('interest_coverage')
        
        # Net cash position is excellent
        if net_debt < 0:
            return "Excellent"
        
        # Check liquidity and debt coverage
        healthy_liquidity = current_ratio and current_ratio > 1.5
        healthy_coverage = interest_coverage and interest_coverage > 3
        
        if healthy_liquidity and healthy_coverage:
            return "Good"
        elif (current_ratio and current_ratio > 1.0) or (interest_coverage and interest_coverage > 1.5):
            return "Moderate"
        else:
            return "Weak"
    
    def generate_summary(self) -> Dict:
        """
        Generate comprehensive analysis summary
        
        Returns:
            Complete analysis results
        """
        return {
            'ticker': self.ticker,
            'company_name': self.company_info.get('company_name', self.ticker),
            'sector': self.company_info.get('sector', 'Unknown'),
            'industry': self.company_info.get('industry', 'Unknown'),
            'analysis_date': datetime.now().isoformat(),
            'growth_analysis': self.analyze_growth(),
            'margin_analysis': self.analyze_margins(),
            'returns_analysis': self.analyze_returns(),
            'cash_flow_analysis': self.analyze_cash_flow(),
            'financial_health': self.analyze_financial_health()
        }


if __name__ == "__main__":
    # Test with sample data
    print("This module is meant to be imported and used with data from data_fetcher.py")