File size: 15,983 Bytes
3fe0726
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
"""
Sector Analyzer
Get all important stocks for a sector and perform peer comparison analysis
"""

import yfinance as yf
import pandas as pd
import numpy as np
from typing import List, Dict, Optional, Tuple
from fundamental_analysis.calculator import calculate_metrics_for_ticker
import warnings
warnings.filterwarnings('ignore')


# Predefined sector/industry stock lists
# These can be expanded or replaced with dynamic fetching from financial APIs
SECTOR_STOCKS = {
    'Technology': {
        'Mega Cap': ['AAPL', 'MSFT', 'GOOGL', 'META', 'NVDA', 'TSLA', 'AVGO', 'ORCL', 'ADBE', 'CRM'],
        'Large Cap': ['AMD', 'INTC', 'QCOM', 'TXN', 'AMAT', 'ADI', 'LRCX', 'KLAC', 'SNPS', 'CDNS'],
        'Mid Cap': ['SNOW', 'CRWD', 'NET', 'DDOG', 'ZS', 'OKTA', 'MDB', 'TEAM', 'WDAY', 'PANW']
    },
    'Financial': {
        'Banks': ['JPM', 'BAC', 'WFC', 'C', 'GS', 'MS', 'USB', 'PNC', 'TFC', 'SCHW'],
        'Insurance': ['BRK-B', 'UNH', 'PGR', 'MET', 'PRU', 'AIG', 'ALL', 'TRV', 'AXP', 'CB'],
        'Asset Management': ['BLK', 'BX', 'KKR', 'APO', 'TROW', 'IVZ', 'BEN', 'AMG']
    },
    'Healthcare': {
        'Pharma': ['JNJ', 'PFE', 'ABBV', 'MRK', 'LLY', 'TMO', 'ABT', 'BMY', 'AMGN', 'GILD'],
        'Biotech': ['VRTX', 'REGN', 'BIIB', 'ILMN', 'MRNA', 'BNTX', 'ALNY', 'SGEN', 'INCY', 'EXAS'],
        'Medical Devices': ['MDT', 'DHR', 'SYK', 'BSX', 'EW', 'ZBH', 'BAX', 'IDXX', 'ALGN', 'HOLX']
    },
    'Consumer': {
        'Retail': ['AMZN', 'WMT', 'HD', 'LOW', 'TGT', 'COST', 'TJX', 'ROST', 'DG', 'DLTR'],
        'Consumer Goods': ['PG', 'KO', 'PEP', 'PM', 'MDLZ', 'CL', 'EL', 'KMB', 'GIS', 'K'],
        'Restaurants': ['MCD', 'SBUX', 'CMG', 'YUM', 'QSR', 'DPZ', 'DRI', 'TXRH', 'WING', 'SHAK']
    },
    'Industrial': {
        'Aerospace': ['BA', 'RTX', 'LMT', 'NOC', 'GD', 'HON', 'GE', 'TDG', 'HWM', 'LDOS'],
        'Manufacturing': ['CAT', 'DE', 'ETN', 'EMR', 'ITW', 'ROK', 'PH', 'IR', 'AME', 'XYL'],
        'Transportation': ['UPS', 'FDX', 'UNP', 'NSC', 'CSX', 'DAL', 'UAL', 'AAL', 'LUV', 'JBHT']
    },
    'Energy': {
        'Oil & Gas': ['XOM', 'CVX', 'COP', 'EOG', 'SLB', 'MPC', 'PSX', 'VLO', 'OXY', 'HES'],
        'Utilities': ['NEE', 'DUK', 'SO', 'D', 'AEP', 'EXC', 'SRE', 'XEL', 'WEC', 'ES']
    },
    'Materials': ['LIN', 'APD', 'SHW', 'ECL', 'NEM', 'FCX', 'NUE', 'VMC', 'MLM', 'DOW'],
    'Real Estate': ['PLD', 'AMT', 'CCI', 'EQIX', 'PSA', 'DLR', 'WELL', 'AVB', 'EQR', 'VICI'],
    'Communication': ['GOOGL', 'META', 'NFLX', 'DIS', 'CMCSA', 'T', 'VZ', 'TMUS', 'CHTR', 'PARA']
}


class SectorAnalyzer:
    """Analyze stocks within a sector for peer comparison"""
    
    def __init__(self, sector: str, subsector: Optional[str] = None):
        """
        Initialize sector analyzer
        
        Args:
            sector: Main sector name (e.g., 'Technology', 'Healthcare')
            subsector: Optional subsector/industry (e.g., 'Banks', 'Pharma')
        """
        self.sector = sector
        self.subsector = subsector
        self.tickers = []
        self.metrics_data = {}
        
    def get_sector_tickers(self) -> List[str]:
        """
        Get list of tickers for the sector/subsector
        
        Returns:
            List of ticker symbols
        """
        if self.sector not in SECTOR_STOCKS:
            print(f"Warning: Sector '{self.sector}' not found in predefined list")
            print(f"Available sectors: {list(SECTOR_STOCKS.keys())}")
            return []
        
        sector_data = SECTOR_STOCKS[self.sector]
        
        # If sector has subsectors (nested dict)
        if isinstance(sector_data, dict) and any(isinstance(v, list) for v in sector_data.values()):
            if self.subsector:
                if self.subsector in sector_data:
                    self.tickers = sector_data[self.subsector]
                else:
                    print(f"Warning: Subsector '{self.subsector}' not found")
                    print(f"Available subsectors: {list(sector_data.keys())}")
                    return []
            else:
                # Flatten all subsectors
                self.tickers = [ticker for subsector_list in sector_data.values() 
                               for ticker in subsector_list]
        else:
            # Direct list of tickers
            self.tickers = sector_data
        
        print(f"Found {len(self.tickers)} tickers for {self.sector}" + 
              (f" > {self.subsector}" if self.subsector else ""))
        
        return self.tickers
    
    def calculate_sector_metrics(self, tickers: Optional[List[str]] = None) -> pd.DataFrame:
        """
        Calculate metrics for all stocks in the sector
        
        Args:
            tickers: Optional custom list of tickers (uses sector tickers if None)
        
        Returns:
            DataFrame with all stocks and their key metrics
        """
        if tickers is None:
            tickers = self.tickers if self.tickers else self.get_sector_tickers()
        
        if not tickers:
            print("No tickers to analyze")
            return pd.DataFrame()
        
        print(f"\nCalculating metrics for {len(tickers)} stocks...")
        print("=" * 80)
        
        results = []
        failed_tickers = []
        
        for i, ticker in enumerate(tickers, 1):
            print(f"\n[{i}/{len(tickers)}] Processing {ticker}...")
            
            try:
                metrics_df, summary = calculate_metrics_for_ticker(ticker)
                
                if metrics_df.empty:
                    print(f"✗ Failed to get data for {ticker}")
                    failed_tickers.append(ticker)
                    continue
                
                # Extract key metrics for comparison
                key_metrics = self._extract_key_metrics(ticker, metrics_df)
                results.append(key_metrics)
                
                # Store full metrics for later reference
                self.metrics_data[ticker] = metrics_df
                
            except Exception as e:
                print(f"✗ Error processing {ticker}: {str(e)}")
                failed_tickers.append(ticker)
                continue
        
        if not results:
            print("\n✗ No data collected for any tickers")
            return pd.DataFrame()
        
        # Create comparison DataFrame
        comparison_df = pd.DataFrame(results)
        comparison_df = comparison_df.set_index('Ticker')
        
        print("\n" + "=" * 80)
        print(f"✓ Successfully processed {len(results)}/{len(tickers)} stocks")
        if failed_tickers:
            print(f"✗ Failed: {', '.join(failed_tickers)}")
        
        return comparison_df
    
    def _extract_key_metrics(self, ticker: str, metrics_df: pd.DataFrame) -> Dict:
        """Extract key metrics for peer comparison"""
        
        def get_metric_value(metric_name: str) -> Optional[float]:
            """Helper to safely extract metric value"""
            row = metrics_df[metrics_df['Metric'] == metric_name]
            if not row.empty and row.iloc[0]['Status'] == 'Available':
                return row.iloc[0]['Value']
            return None
        
        key_metrics = {
            'Ticker': ticker,
            
            # Valuation
            'Market_Cap': get_metric_value('Market Capitalization'),
            'PE_Ratio': get_metric_value('P/E Ratio (TTM)'),
            'PEG_Ratio': get_metric_value('PEG Ratio'),
            'EV_EBITDA': get_metric_value('EV/EBITDA'),
            'Price_FCF': get_metric_value('Price / FCF'),
            'FCF_Yield_%': get_metric_value('FCF Yield (Enterprise) %'),
            'Price_Book': get_metric_value('Price / Book'),
            
            # Profitability
            'Gross_Margin_%': get_metric_value('Gross Margin %'),
            'EBITDA_Margin_%': get_metric_value('EBITDA Margin %'),
            'Net_Margin_%': get_metric_value('Net Margin %'),
            
            # Cash Flow
            'Free_Cash_Flow': get_metric_value('Free Cash Flow'),
            'Cash_Conversion': get_metric_value('Cash Conversion Ratio'),
            
            # Leverage
            'Net_Debt_EBITDA': get_metric_value('Net Debt / EBITDA'),
            'Debt_Equity': get_metric_value('Debt / Equity'),
            'Current_Ratio': get_metric_value('Current Ratio'),
            
            # Returns
            'ROE_%': get_metric_value('Return on Equity (ROE) %'),
            'ROA_%': get_metric_value('Return on Assets (ROA) %'),
            'ROIC_%': get_metric_value('Return on Invested Capital (ROIC) %'),
            
            # Growth
            'Revenue_Growth_%': get_metric_value('Revenue Growth (YoY) %'),
            'EPS_Growth_%': get_metric_value('EPS Growth (YoY) %'),
            
            # Capital Allocation
            'Payout_Ratio_%': get_metric_value('Payout Ratio %'),
            'Total_Payout_%': get_metric_value('Total Payout Ratio %'),
        }
        
        return key_metrics
    
    def get_peer_statistics(self, comparison_df: pd.DataFrame) -> pd.DataFrame:
        """
        Calculate sector statistics (median, mean, percentiles)
        
        Args:
            comparison_df: DataFrame from calculate_sector_metrics
        
        Returns:
            DataFrame with sector statistics
        """
        if comparison_df.empty:
            return pd.DataFrame()
        
        stats_df = pd.DataFrame({
            'Median': comparison_df.median(),
            'Mean': comparison_df.mean(),
            'Std_Dev': comparison_df.std(),
            'Min': comparison_df.min(),
            'Q1': comparison_df.quantile(0.25),
            'Q3': comparison_df.quantile(0.75),
            'Max': comparison_df.max(),
            'Count': comparison_df.count()
        })
        
        return stats_df
    
    def compare_stock_to_peers(self, ticker: str, comparison_df: pd.DataFrame) -> pd.DataFrame:
        """
        Compare a specific stock to sector peers
        
        Args:
            ticker: Stock to compare
            comparison_df: Sector comparison data
        
        Returns:
            DataFrame showing stock vs sector statistics
        """
        if ticker not in comparison_df.index:
            print(f"Ticker {ticker} not found in comparison data")
            return pd.DataFrame()
        
        stock_data = comparison_df.loc[ticker]
        sector_stats = self.get_peer_statistics(comparison_df)
        
        comparison = pd.DataFrame({
            'Stock_Value': stock_data,
            'Sector_Median': sector_stats['Median'],
            'Sector_Mean': sector_stats['Mean'],
            'Percentile_Rank': comparison_df.rank(pct=True).loc[ticker] * 100,
            'vs_Median': ((stock_data - sector_stats['Median']) / sector_stats['Median'] * 100)
        })
        
        return comparison
    
    def rank_stocks(self, comparison_df: pd.DataFrame, 
                    metrics: Optional[List[str]] = None) -> pd.DataFrame:
        """
        Rank stocks based on key metrics
        
        Args:
            comparison_df: Sector comparison data
            metrics: List of metrics to rank by (None = use default key metrics)
        
        Returns:
            DataFrame with rankings
        """
        if comparison_df.empty:
            return pd.DataFrame()
        
        # Default key metrics for ranking (higher is better for most)
        if metrics is None:
            metrics = [
                'FCF_Yield_%',      # Higher is better
                'ROIC_%',           # Higher is better
                'ROE_%',            # Higher is better
                'Revenue_Growth_%', # Higher is better
                'EPS_Growth_%',     # Higher is better
            ]
            
            # Reverse ranking for these (lower is better)
            reverse_metrics = [
                'PE_Ratio',
                'PEG_Ratio',
                'EV_EBITDA',
                'Net_Debt_EBITDA',
                'Debt_Equity'
            ]
        
        # Calculate composite score
        scores = pd.DataFrame(index=comparison_df.index)
        
        for metric in metrics:
            if metric in comparison_df.columns:
                # Normalize and rank (higher is better)
                scores[f'{metric}_rank'] = comparison_df[metric].rank(pct=True, na_option='keep')
        
        # Calculate average rank across all metrics
        scores['Composite_Score'] = scores.mean(axis=1)
        scores['Rank'] = scores['Composite_Score'].rank(ascending=False, method='min')
        
        # Add key metrics for context
        result = scores[['Composite_Score', 'Rank']].copy()
        for metric in metrics:
            if metric in comparison_df.columns:
                result[metric] = comparison_df[metric]
        
        return result.sort_values('Rank')


def analyze_sector(sector: str, subsector: Optional[str] = None, 
                   custom_tickers: Optional[List[str]] = None) -> Tuple[pd.DataFrame, pd.DataFrame, SectorAnalyzer]:
    """
    Main function to analyze a sector
    
    Args:
        sector: Sector name
        subsector: Optional subsector name
        custom_tickers: Optional custom list of tickers
    
    Returns:
        Tuple of (comparison_df, sector_stats, analyzer_object)
    """
    analyzer = SectorAnalyzer(sector, subsector)
    
    if custom_tickers:
        comparison_df = analyzer.calculate_sector_metrics(custom_tickers)
    else:
        analyzer.get_sector_tickers()
        comparison_df = analyzer.calculate_sector_metrics()
    
    sector_stats = analyzer.get_peer_statistics(comparison_df)
    
    return comparison_df, sector_stats, analyzer


def list_available_sectors() -> None:
    """Print all available sectors and subsectors"""
    print("\nAVAILABLE SECTORS:")
    print("=" * 80)
    
    for sector, data in SECTOR_STOCKS.items():
        if isinstance(data, dict) and any(isinstance(v, list) for v in data.values()):
            print(f"\n{sector}:")
            for subsector, tickers in data.items():
                print(f"  - {subsector} ({len(tickers)} stocks)")
        else:
            print(f"\n{sector}: {len(data)} stocks")


if __name__ == "__main__":
    # Test with a sample sector
    print("SECTOR ANALYZER TEST")
    print("=" * 80)
    
    # Show available sectors
    list_available_sectors()
    
    # Test with a small subset of Technology stocks
    print("\n\nTesting with Technology > Mega Cap (first 3 stocks)...")
    print("=" * 80)
    
    test_tickers = ['AAPL', 'MSFT', 'GOOGL']
    comparison_df, sector_stats, analyzer = analyze_sector('Technology', custom_tickers=test_tickers)
    
    if not comparison_df.empty:
        print("\n" + "=" * 80)
        print("COMPARISON DATA")
        print("=" * 80)
        
        # Show key valuation metrics
        valuation_cols = ['Market_Cap', 'PE_Ratio', 'PEG_Ratio', 'FCF_Yield_%', 'ROIC_%']
        print("\nValuation Metrics:")
        print(comparison_df[valuation_cols].to_string())
        
        # Show sector statistics
        print("\n" + "=" * 80)
        print("SECTOR STATISTICS")
        print("=" * 80)
        print(sector_stats.loc[valuation_cols].to_string())
        
        # Rank stocks
        print("\n" + "=" * 80)
        print("STOCK RANKINGS")
        print("=" * 80)
        rankings = analyzer.rank_stocks(comparison_df)
        print(rankings.to_string())
        
        # Compare AAPL to peers
        print("\n" + "=" * 80)
        print("AAPL vs PEERS")
        print("=" * 80)
        aapl_comparison = analyzer.compare_stock_to_peers('AAPL', comparison_df)
        print(aapl_comparison.loc[valuation_cols].to_string())
        
        # Save results
        comparison_df.to_csv('sector_comparison.csv')
        sector_stats.to_csv('sector_statistics.csv')
        print("\n✓ Results saved to sector_comparison.csv and sector_statistics.csv")