File size: 13,010 Bytes
3fe0726
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
"""
Valuation engine for stock analysis.
Implements DCF, comparable multiples, and scenario analysis.
"""

import pandas as pd
import numpy as np
from typing import Dict, List, Optional, Tuple


class ValuationEngine:
    """Performs stock valuation using multiple methodologies"""
    
    def __init__(self, financial_data: Dict, analysis_results: Dict):
        """
        Initialize valuation engine
        
        Args:
            financial_data: Complete dataset from FinancialDataFetcher
            analysis_results: Results from FinancialAnalyzer
        """
        self.ticker = financial_data.get('ticker')
        self.metrics = financial_data.get('metrics', {})
        self.statements = financial_data.get('financial_statements', {})
        self.sector_metrics = financial_data.get('sector_metrics', {})
        self.analysis = analysis_results
        
    def calculate_intrinsic_value_dcf(self, 
                                      growth_rate: float = 0.10,
                                      terminal_growth: float = 0.02,
                                      discount_rate: float = 0.10,
                                      years: int = 5) -> Dict:
        """
        Calculate intrinsic value using DCF method
        
        Args:
            growth_rate: Expected FCF growth rate
            terminal_growth: Perpetual growth rate
            discount_rate: WACC / required return
            years: Forecast period
            
        Returns:
            DCF valuation results
        """
        results = {
            'method': 'DCF',
            'assumptions': {
                'growth_rate': growth_rate,
                'terminal_growth': terminal_growth,
                'discount_rate': discount_rate,
                'forecast_years': years
            }
        }
        
        try:
            # Get current FCF
            current_fcf = self.metrics.get('free_cash_flow', 0)
            
            if current_fcf <= 0:
                results['error'] = 'Negative or zero FCF - DCF not applicable'
                return results
            
            # Project FCF
            projected_fcf = []
            pv_fcf = []
            
            for year in range(1, years + 1):
                fcf = current_fcf * ((1 + growth_rate) ** year)
                pv = fcf / ((1 + discount_rate) ** year)
                projected_fcf.append(fcf)
                pv_fcf.append(pv)
            
            # Terminal value
            terminal_fcf = projected_fcf[-1] * (1 + terminal_growth)
            terminal_value = terminal_fcf / (discount_rate - terminal_growth)
            pv_terminal = terminal_value / ((1 + discount_rate) ** years)
            
            # Enterprise value
            enterprise_value = sum(pv_fcf) + pv_terminal
            
            # Equity value
            net_debt = self.metrics.get('total_debt', 0) - self.metrics.get('total_cash', 0)
            equity_value = enterprise_value - net_debt
            
            # Per share value
            shares_outstanding = self.metrics.get('shares_outstanding', 1)
            fair_value_per_share = equity_value / shares_outstanding if shares_outstanding > 0 else 0
            
            current_price = self.metrics.get('current_price', 0)
            upside = ((fair_value_per_share - current_price) / current_price) * 100 if current_price > 0 else 0
            
            results.update({
                'current_fcf': current_fcf,
                'pv_cash_flows': sum(pv_fcf),
                'pv_terminal_value': pv_terminal,
                'enterprise_value': enterprise_value,
                'equity_value': equity_value,
                'fair_value_per_share': fair_value_per_share,
                'current_price': current_price,
                'upside_percent': upside,
                'recommendation': 'BUY' if upside > 15 else 'HOLD' if upside > -10 else 'SELL'
            })
            
        except Exception as e:
            results['error'] = f'DCF calculation error: {str(e)}'
        
        return results
    
    def calculate_relative_valuation(self) -> Dict:
        """
        Calculate valuation using comparable multiples
        
        Returns:
            Relative valuation results
        """
        results = {
            'method': 'Comparable Multiples'
        }
        
        current_price = self.metrics.get('current_price', 0)
        
        # P/E based valuation
        if self.metrics.get('trailing_pe') and self.metrics.get('eps_trailing'):
            sector_pe = self.sector_metrics.get('trailing_pe_median')
            
            if sector_pe:
                eps = self.metrics.get('eps_trailing')
                fair_value_pe = eps * sector_pe
                pe_upside = ((fair_value_pe - current_price) / current_price) * 100 if current_price > 0 else 0
                
                results['pe_valuation'] = {
                    'company_pe': self.metrics.get('trailing_pe'),
                    'sector_pe_median': sector_pe,
                    'eps': eps,
                    'fair_value': fair_value_pe,
                    'current_price': current_price,
                    'upside_percent': pe_upside
                }
        
        # PEG based valuation
        if self.metrics.get('peg_ratio') and self.metrics.get('eps_forward'):
            sector_peg = self.sector_metrics.get('peg_ratio_median')
            earnings_growth = self.analysis.get('growth_analysis', {}).get('earnings_growth_ttm', 0)
            
            if sector_peg and earnings_growth:
                eps_forward = self.metrics.get('eps_forward')
                fair_pe = sector_peg * (earnings_growth * 100)
                fair_value_peg = eps_forward * fair_pe
                peg_upside = ((fair_value_peg - current_price) / current_price) * 100 if current_price > 0 else 0
                
                results['peg_valuation'] = {
                    'company_peg': self.metrics.get('peg_ratio'),
                    'sector_peg_median': sector_peg,
                    'earnings_growth': earnings_growth,
                    'fair_pe': fair_pe,
                    'fair_value': fair_value_peg,
                    'current_price': current_price,
                    'upside_percent': peg_upside
                }
        
        # P/B based valuation
        if self.metrics.get('price_to_book') and self.metrics.get('book_value_per_share'):
            sector_pb = self.sector_metrics.get('price_to_book_median')
            
            if sector_pb:
                book_value = self.metrics.get('book_value_per_share')
                fair_value_pb = book_value * sector_pb
                pb_upside = ((fair_value_pb - current_price) / current_price) * 100 if current_price > 0 else 0
                
                results['pb_valuation'] = {
                    'company_pb': self.metrics.get('price_to_book'),
                    'sector_pb_median': sector_pb,
                    'book_value_per_share': book_value,
                    'fair_value': fair_value_pb,
                    'current_price': current_price,
                    'upside_percent': pb_upside
                }
        
        # Calculate average upside from available methods
        upsides = []
        if 'pe_valuation' in results:
            upsides.append(results['pe_valuation']['upside_percent'])
        if 'peg_valuation' in results:
            upsides.append(results['peg_valuation']['upside_percent'])
        if 'pb_valuation' in results:
            upsides.append(results['pb_valuation']['upside_percent'])
        
        if upsides:
            avg_upside = sum(upsides) / len(upsides)
            results['average_upside'] = avg_upside
            results['recommendation'] = 'BUY' if avg_upside > 15 else 'HOLD' if avg_upside > -10 else 'SELL'
        
        return results
    
    def scenario_analysis(self) -> Dict:
        """
        Perform bull/base/bear scenario valuation
        
        Returns:
            Scenario analysis results
        """
        # Base case: use historical/current growth rates
        base_growth = self.analysis.get('growth_analysis', {}).get('revenue_growth_ttm', 0.08)
        base_growth = max(0.05, min(base_growth, 0.20))  # Cap between 5% and 20%
        
        scenarios = {}
        
        # Bear case: 20% lower growth, higher risk (lower valuation)
        bear_growth = base_growth * 0.8
        scenarios['bear'] = self.calculate_intrinsic_value_dcf(
            growth_rate=bear_growth,
            discount_rate=0.12  # Higher discount rate = higher risk = lower valuation
        )
        
        # Base case
        scenarios['base'] = self.calculate_intrinsic_value_dcf(
            growth_rate=base_growth,
            discount_rate=0.10
        )
        
        # Bull case: 20% higher growth, lower risk (higher valuation)
        bull_growth = base_growth * 1.2
        scenarios['bull'] = self.calculate_intrinsic_value_dcf(
            growth_rate=bull_growth,
            discount_rate=0.08  # Lower discount rate = lower risk = higher valuation
        )
        
        # Summary
        results = {
            'scenarios': scenarios,
            'current_price': self.metrics.get('current_price', 0)
        }
        
        # Calculate price ranges
        bear_price = scenarios['bear'].get('fair_value_per_share', 0)
        base_price = scenarios['base'].get('fair_value_per_share', 0)
        bull_price = scenarios['bull'].get('fair_value_per_share', 0)
        
        results['price_range'] = {
            'bear': bear_price,
            'base': base_price,
            'bull': bull_price,
            'range': bull_price - bear_price
        }
        
        # Risk/reward assessment
        current_price = results['current_price']
        if current_price > 0:
            downside = ((bear_price - current_price) / current_price) * 100
            upside = ((bull_price - current_price) / current_price) * 100
            
            results['risk_reward'] = {
                'downside_percent': downside,
                'upside_percent': upside,
                'risk_reward_ratio': abs(upside / downside) if downside != 0 else 0,
                'assessment': 'Favorable' if upside > abs(downside) else 'Unfavorable'
            }
        
        return results
    
    def calculate_margin_of_safety(self) -> Dict:
        """
        Calculate margin of safety
        
        Returns:
            Margin of safety metrics
        """
        results = {}
        
        current_price = self.metrics.get('current_price', 0)
        if current_price <= 0:
            return {'error': 'Invalid current price'}
        
        # Based on DCF
        dcf_result = self.calculate_intrinsic_value_dcf()
        if 'fair_value_per_share' in dcf_result:
            intrinsic_value = dcf_result['fair_value_per_share']
            margin = ((intrinsic_value - current_price) / intrinsic_value) * 100 if intrinsic_value > 0 else 0
            
            results['dcf_margin_of_safety'] = {
                'intrinsic_value': intrinsic_value,
                'current_price': current_price,
                'margin_percent': margin,
                'assessment': self._assess_margin_of_safety(margin)
            }
        
        # Based on book value
        book_value = self.metrics.get('book_value_per_share', 0)
        if book_value > 0:
            margin = ((book_value - current_price) / book_value) * 100
            results['book_value_margin'] = {
                'book_value': book_value,
                'current_price': current_price,
                'margin_percent': margin
            }
        
        return results
    
    def _assess_margin_of_safety(self, margin: float) -> str:
        """Assess margin of safety"""
        if margin >= 30:
            return "Excellent - Strong margin of safety"
        elif margin >= 20:
            return "Good - Adequate margin of safety"
        elif margin >= 10:
            return "Fair - Minimal margin of safety"
        elif margin >= 0:
            return "Weak - Little to no margin of safety"
        else:
            return "Overvalued - Negative margin of safety"
    
    def generate_valuation_report(self) -> Dict:
        """
        Generate comprehensive valuation report
        
        Returns:
            Complete valuation analysis
        """
        return {
            'ticker': self.ticker,
            'current_price': self.metrics.get('current_price', 0),
            'dcf_valuation': self.calculate_intrinsic_value_dcf(),
            'relative_valuation': self.calculate_relative_valuation(),
            'scenario_analysis': self.scenario_analysis(),
            'margin_of_safety': self.calculate_margin_of_safety()
        }


if __name__ == "__main__":
    print("This module is meant to be imported and used with data from data_fetcher.py and financial_analyzer.py")