gotti_signal_gen / src /db /local_database.py
Papaflessas's picture
Deploy Signal Generator app
a3c7ac0
"""
Advanced Local Database Manager for Stock Alchemist
Stores data as JSON files organized by date, type, and ticker
Uses MySQL for indexing and JSON files for data storage
"""
import json
import mysql.connector
from mysql.connector import Error
from datetime import date, datetime, timedelta
from pathlib import Path
from typing import Any, Dict, List, Optional, Union
from dataclasses import dataclass, asdict, field
from enum import Enum
import hashlib
import gzip
import numpy as np
class DataType(Enum):
"""Supported data types - simplified naming"""
# Calendar events (no prefix needed)
EARNINGS = "earnings"
IPO = "ipo"
STOCK_SPLIT = "stock_split"
DIVIDENDS = "dividends"
ECONOMIC_EVENTS = "economic_events"
# Other data types
FUNDAMENTAL = "fundamental_analysis"
NEWS = "news"
TECHNICAL_ANALYSIS = "technical_analysis"
@dataclass
class DatabaseEntry:
"""Base class for database entries"""
date: str # ISO format YYYY-MM-DD
data_type: str # DataType enum value
ticker: str
data: Dict[str, Any]
created_at: str = field(default_factory=lambda: datetime.now().isoformat())
updated_at: str = field(default_factory=lambda: datetime.now().isoformat())
expiry_date: Optional[str] = None
metadata: Dict[str, Any] = field(default_factory=dict)
def to_dict(self):
"""Convert to dictionary"""
return asdict(self)
@classmethod
def from_dict(cls, data: Dict):
"""Create from dictionary"""
return cls(**data)
def generate_key(self):
"""
Generate unique key for this entry
For calendar events, includes execution_date/ex_date to prevent duplicates
"""
# For calendar events, include the actual event date to ensure uniqueness
if self.data_type in ['earnings', 'ipo', 'stock_split', 'dividends']:
event_date = (self.data.get('execution_date') or
self.data.get('ex_date') or
self.data.get('date') or
self.date)
key_string = f"{self.data_type}_{self.ticker}_{event_date}"
else:
key_string = f"{self.date}_{self.data_type}_{self.ticker}"
return hashlib.md5(key_string.encode()).hexdigest()
class LocalDatabase:
"""
Advanced local database manager with MySQL index and JSON file storage
Features:
- MySQL metadata index for fast queries
- JSON files for actual data storage
- Optional gzip compression for large data
- Automatic expiry and cleanup
- Date/Type/Ticker indexing
- Batch operations support
"""
def __init__(self, db_dir: str = "database", compress: bool = False):
"""
Initialize database manager
Args:
db_dir: Root directory for database storage
compress: Whether to compress JSON files with gzip
"""
self.db_dir = Path(db_dir)
try:
self.db_dir.mkdir(exist_ok=True)
self.data_dir = self.db_dir / "data"
self.data_dir.mkdir(exist_ok=True)
except (PermissionError, OSError) as e:
print(f"⚠️ Error creating database dir at {self.db_dir}: {e}")
import tempfile
self.db_dir = Path(tempfile.gettempdir()) / "gotti_database"
print(f"⚠️ Falling back to temporary directory: {self.db_dir}")
self.db_dir.mkdir(exist_ok=True)
self.data_dir = self.db_dir / "data"
self.data_dir.mkdir(exist_ok=True)
# Load environment variables
from dotenv import load_dotenv
import os
load_dotenv()
# MySQL connection parameters from environment variables
self.mysql_config = {
'host': os.getenv('DB_HOST', 'localhost').strip(),
'user': os.getenv('DB_USERNAME', 'root').strip(),
'password': os.getenv('DB_PASSWORD', '').strip(),
'database': os.getenv('DB_DATABASE', 'gotti').strip(),
'port': int(os.getenv('DB_PORT', 3306))
}
# SSL Configuration for TiDB
ssl_ca = os.getenv('DB_SSL_CA')
if ssl_ca:
# Handle if the content itself is passed (begins with ---)
if "-----BEGIN CERTIFICATE-----" in ssl_ca:
try:
import tempfile
# Create a temporary file for the certificate
# We use a fixed location in /tmp relative to workdir if possible or tempfile
# But tempfile is safer. We need it to persist for the process life.
# Be careful about file cleanup, but for a container it's fine.
# Create a persistent temp file (won't be deleted automatically on close)
# We'll save it to a known location for debugging: /tmp/tidb_ca.pem
tmp_ca_path = Path("/tmp/tidb_ca.pem")
# If on Windows (local dev), assume execution in app dir
if os.name == 'nt':
tmp_ca_path = Path("tidb_ca.pem")
with open(tmp_ca_path, "w", encoding='utf-8') as f:
f.write(ssl_ca)
self.mysql_config['ssl_ca'] = str(tmp_ca_path)
self.mysql_config['ssl_verify_cert'] = True
self.mysql_config['ssl_verify_identity'] = True
print(f"🔒 Using provided SSL Certificate content (saved to {tmp_ca_path})")
except Exception as e:
print(f"⚠️ Failed to write SSL CA content: {e}")
else:
# Resolve relative path if needed (existing logic)
if not os.path.isabs(ssl_ca):
project_root = Path(__file__).parent.parent.parent
ssl_ca_path = project_root / ssl_ca
if ssl_ca_path.exists():
self.mysql_config['ssl_ca'] = str(ssl_ca_path)
self.mysql_config['ssl_verify_cert'] = True
self.mysql_config['ssl_verify_identity'] = True
print(f"🔒 Using SSL Certificate from file: {ssl_ca_path}")
else:
print(f"⚠️ SSL CA file not found at {ssl_ca_path}")
elif os.path.exists(ssl_ca):
self.mysql_config['ssl_ca'] = ssl_ca
self.mysql_config['ssl_verify_cert'] = True
self.mysql_config['ssl_verify_identity'] = True
self.compress = compress
self._init_database()
def _create_connection(self):
"""Create and return a MySQL database connection"""
try:
connection = mysql.connector.connect(**self.mysql_config)
return connection
except Error as e:
print(f"❌ Error connecting to MySQL: {e}")
return None
def _get_table_name(self, data_type: str) -> str:
"""Determine which table to use based on data_type"""
# Calendar events
if data_type in ['earnings', 'ipo', 'stock_split', 'dividends', 'economic_events']:
return 'calendar'
# News
elif data_type == 'news':
return 'news'
# Fundamental analysis
elif data_type == 'fundamental_analysis':
return 'fundamental_analysis'
else:
raise ValueError(f"Unknown data type: {data_type}")
def _init_database(self):
"""Initialize MySQL tables - three separate tables by data category"""
conn = self._create_connection()
if not conn:
raise Exception("Failed to connect to MySQL database")
cursor = conn.cursor()
try:
# Create calendar table
cursor.execute('''
CREATE TABLE IF NOT EXISTS calendar (
entry_key VARCHAR(32) PRIMARY KEY,
date DATE NOT NULL,
event_type VARCHAR(50) NOT NULL,
ticker VARCHAR(20) NOT NULL,
data JSON NOT NULL,
created_at DATETIME NOT NULL,
updated_at DATETIME NOT NULL,
expiry_date DATE,
metadata JSON,
execution_date DATE,
INDEX idx_date (date),
INDEX idx_event_type (event_type),
INDEX idx_ticker (ticker),
INDEX idx_date_event (date, event_type),
INDEX idx_ticker_event (ticker, event_type)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
''')
# Create news table
cursor.execute('''
CREATE TABLE IF NOT EXISTS news (
entry_key VARCHAR(32) PRIMARY KEY,
date DATE NOT NULL,
ticker VARCHAR(20) NOT NULL,
data JSON NOT NULL,
created_at DATETIME NOT NULL,
updated_at DATETIME NOT NULL,
expiry_date DATE,
metadata JSON,
INDEX idx_date (date),
INDEX idx_ticker (ticker),
INDEX idx_date_ticker (date, ticker)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
''')
# Create fundamental_analysis table
cursor.execute('''
CREATE TABLE IF NOT EXISTS fundamental_analysis (
entry_key VARCHAR(32) PRIMARY KEY,
date DATE NOT NULL,
ticker VARCHAR(20) NOT NULL,
data JSON NOT NULL,
created_at DATETIME NOT NULL,
updated_at DATETIME NOT NULL,
expiry_date DATE,
metadata JSON,
INDEX idx_date (date),
INDEX idx_ticker (ticker),
INDEX idx_date_ticker (date, ticker)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
''')
# Create available_tickers table - whitelist of allowed tickers
cursor.execute('''
CREATE TABLE IF NOT EXISTS available_tickers (
ticker VARCHAR(20) PRIMARY KEY,
name VARCHAR(255),
exchange VARCHAR(50),
sector VARCHAR(100),
is_active BOOLEAN DEFAULT TRUE,
added_at DATETIME NOT NULL,
updated_at DATETIME NOT NULL,
metadata JSON,
INDEX idx_is_active (is_active),
INDEX idx_exchange (exchange),
INDEX idx_sector (sector)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
''')
# Create signals table - tracks actionable ticker signals
cursor.execute('''
CREATE TABLE IF NOT EXISTS signals (
signal_id VARCHAR(32) PRIMARY KEY,
ticker VARCHAR(20) NOT NULL,
signal_date DATE NOT NULL,
signal_position VARCHAR(10) NOT NULL,
calendar_event_keys JSON,
news_keys JSON,
fundamental_analysis_key VARCHAR(32),
sentiment JSON,
created_at DATETIME NOT NULL,
updated_at DATETIME NOT NULL,
metadata JSON,
INDEX idx_ticker (ticker),
INDEX idx_signal_date (signal_date),
INDEX idx_ticker_date (ticker, signal_date),
INDEX idx_created_at (created_at)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
''')
# Add execution_date column to calendar table if it doesn't exist
try:
cursor.execute("ALTER TABLE calendar ADD COLUMN execution_date DATE AFTER date")
print("✅ Added execution_date column to calendar table")
except Error as e:
if e.errno != 1060: # Error 1060 = Duplicate column name
pass # Column already exists, ignore
# Add sentiment column to signals table if it doesn't exist
try:
cursor.execute("ALTER TABLE signals ADD COLUMN sentiment JSON AFTER fundamental_analysis_key")
print("✅ Added sentiment column to signals table")
except Error as e:
if e.errno != 1060: # Error 1060 = Duplicate column name
pass # Column already exists, ignore
# Add signal_position column to signals table if it doesn't exist
try:
cursor.execute("ALTER TABLE signals ADD COLUMN signal_position VARCHAR(10) AFTER signal_date")
print("✅ Added signal_position column to signals table")
except Error as e:
if e.errno != 1060: # Error 1060 = Duplicate column name
pass # Column already exists, ignore
conn.commit()
print("✅ MySQL database tables initialized successfully (calendar, news, fundamental_analysis, available_tickers, signals)")
except Error as e:
print(f"❌ Error initializing database: {e}")
# Try without IF NOT EXISTS for MySQL versions that don't support it
try:
cursor.execute("SHOW COLUMNS FROM calendar LIKE 'execution_date'")
if cursor.fetchone() is None:
cursor.execute("ALTER TABLE calendar ADD COLUMN execution_date DATE AFTER date")
conn.commit()
print("✅ Added execution_date column to calendar table")
except Exception as alter_error:
print(f"⚠️ Could not add execution_date column: {alter_error}")
# Try adding sentiment column for older MySQL versions
try:
cursor.execute("SHOW COLUMNS FROM signals LIKE 'sentiment'")
if cursor.fetchone() is None:
cursor.execute("ALTER TABLE signals ADD COLUMN sentiment JSON AFTER fundamental_analysis_key")
conn.commit()
print("✅ Added sentiment column to signals table")
except Exception as alter_error:
print(f"⚠️ Could not add sentiment column: {alter_error}")
# Try adding signal_position column for older MySQL versions
try:
cursor.execute("SHOW COLUMNS FROM signals LIKE 'signal_position'")
if cursor.fetchone() is None:
cursor.execute("ALTER TABLE signals ADD COLUMN signal_position VARCHAR(10) AFTER signal_date")
conn.commit()
print("✅ Added signal_position column to signals table")
except Exception as alter_error:
print(f"⚠️ Could not add signal_position column: {alter_error}")
finally:
cursor.close()
conn.close()
def _generate_file_path(self, entry_key: str, data_type: str, date_str: str) -> Path:
"""Generate organized file path for data storage"""
# Organize by type/year/month/
year_month = datetime.fromisoformat(date_str).strftime("%Y/%m")
type_dir = self.data_dir / data_type / year_month
type_dir.mkdir(parents=True, exist_ok=True)
extension = ".json.gz" if self.compress else ".json"
return type_dir / f"{entry_key}{extension}"
def _write_json(self, file_path: Path, data: Dict):
"""Write JSON data with optional compression"""
json_str = json.dumps(data, indent=2, default=str)
if self.compress:
with gzip.open(file_path, 'wt', encoding='utf-8') as f:
f.write(json_str)
else:
with open(file_path, 'w', encoding='utf-8') as f:
f.write(json_str)
def _read_json(self, file_path: Path, compressed: bool) -> Dict:
"""Read JSON data with optional decompression"""
if compressed:
with gzip.open(file_path, 'rt', encoding='utf-8') as f:
return json.load(f)
else:
with open(file_path, 'r', encoding='utf-8') as f:
return json.load(f)
def _clean_data_for_json(self, data: Any) -> Any:
"""
Recursively clean data to ensure it's JSON serializable.
- Converts NaN/Infinity to None
- Converts numpy types to native python types
"""
if isinstance(data, dict):
return {k: self._clean_data_for_json(v) for k, v in data.items()}
elif isinstance(data, list):
return [self._clean_data_for_json(v) for v in data]
elif isinstance(data, float):
if np.isnan(data) or np.isinf(data):
return None
return float(data)
elif isinstance(data, np.integer):
return int(data)
elif isinstance(data, np.floating):
if np.isnan(data) or np.isinf(data):
return None
return float(data)
elif isinstance(data, np.ndarray):
return self._clean_data_for_json(data.tolist())
return data
def add_ticker(self, ticker: str, name: str = None, exchange: str = None,
sector: str = None, metadata: Dict = None) -> bool:
"""
Add a ticker to the available_tickers whitelist.
Args:
ticker: Ticker symbol
name: Company name
exchange: Exchange name (e.g., 'NASDAQ', 'NYSE')
sector: Company sector
metadata: Additional metadata as JSON
Returns:
True if successful, False otherwise
"""
conn = self._create_connection()
if not conn:
return False
cursor = conn.cursor()
try:
now = datetime.now()
cursor.execute('''
INSERT INTO available_tickers
(ticker, name, exchange, sector, is_active, added_at, updated_at, metadata)
VALUES (%s, %s, %s, %s, %s, %s, %s, %s)
ON DUPLICATE KEY UPDATE
name = VALUES(name),
exchange = VALUES(exchange),
sector = VALUES(sector),
is_active = VALUES(is_active),
updated_at = VALUES(updated_at),
metadata = VALUES(metadata)
''', (
ticker.upper(),
name,
exchange,
sector,
True,
now,
now,
json.dumps(metadata) if metadata else None
))
conn.commit()
return True
except Error as e:
print(f"❌ Error adding ticker {ticker}: {e}")
return False
finally:
cursor.close()
conn.close()
def get_macroeconomic_indicators(self) -> Dict[str, Any]:
"""
Retrieve macroeconomic indicators from the database.
Returns:
Dictionary of macroeconomic indicators
"""
conn = self._create_connection()
if not conn:
return {}
cursor = conn.cursor()
try:
cursor.execute('''
SELECT data
FROM macroeconomic_indicators
ORDER BY date DESC
LIMIT 1
''')
row = cursor.fetchone()
if row:
return json.loads(row[0])
return {}
except Error as e:
print(f"❌ Error fetching macroeconomic indicators: {e}")
return {}
finally:
cursor.close()
conn.close()
def remove_ticker(self, ticker: str) -> bool:
"""
Deactivate a ticker (soft delete - sets is_active to False).
Args:
ticker: Ticker symbol to deactivate
Returns:
True if successful, False otherwise
"""
conn = self._create_connection()
if not conn:
return False
cursor = conn.cursor()
try:
cursor.execute(
"UPDATE available_tickers SET is_active = FALSE, updated_at = %s WHERE ticker = %s",
(datetime.now(), ticker.upper())
)
conn.commit()
return cursor.rowcount > 0
except Error as e:
print(f"❌ Error removing ticker {ticker}: {e}")
return False
finally:
cursor.close()
conn.close()
def get_all_available_tickers(self) -> List[str]:
"""
Get all active tickers from the whitelist.
Returns:
List of ticker symbols
"""
conn = self._create_connection()
if not conn:
return []
cursor = conn.cursor()
try:
cursor.execute("SELECT ticker FROM available_tickers WHERE is_active = TRUE ORDER BY ticker")
return [row[0] for row in cursor.fetchall()]
except Error as e:
print(f"❌ Error fetching available tickers: {e}")
return []
finally:
cursor.close()
conn.close()
def is_ticker_available(self, ticker: str) -> bool:
"""
Check if ticker is in the available_tickers whitelist.
Args:
ticker: Ticker symbol to check
Returns:
True if ticker is available and active, False otherwise
"""
conn = self._create_connection()
if not conn:
return False
cursor = conn.cursor()
try:
cursor.execute(
"SELECT is_active FROM available_tickers WHERE ticker = %s",
(ticker.upper(),)
)
result = cursor.fetchone()
if result and result[0]: # Ticker exists and is_active = True
return True
return False
except Error as e:
print(f"❌ Error checking ticker availability for {ticker}: {e}")
return False
finally:
cursor.close()
conn.close()
def save(self, entry: DatabaseEntry, expiry_days: Optional[int] = None) -> bool:
"""
Save entry to database. Updates existing entry if duplicate is found.
IMPORTANT: Checks if ticker is in available_tickers whitelist before saving.
Args:
entry: DatabaseEntry to save
expiry_days: Optional expiry in days
Returns:
True if successful, False if ticker not available or save fails
"""
try:
# CRITICAL: Check if ticker is in the available_tickers whitelist
# Skip check for economic events as they use country names as tickers
if entry.data_type != DataType.ECONOMIC_EVENTS.value and not self.is_ticker_available(entry.ticker):
print(f"⚠️ Skipping {entry.data_type} for {entry.ticker} - ticker not in available_tickers whitelist")
return False
entry_key = entry.generate_key()
# Get the appropriate table name
table_name = self._get_table_name(entry.data_type)
# Check if entry already exists
conn = self._create_connection()
if not conn:
return False
cursor = conn.cursor()
cursor.execute(f'SELECT created_at FROM {table_name} WHERE entry_key = %s', (entry_key,))
existing = cursor.fetchone()
# Preserve original created_at if updating
if existing:
entry.created_at = str(existing[0])
# Update the updated_at timestamp
entry.updated_at = datetime.now().isoformat()
# Calculate expiry date if specified
if expiry_days:
expiry_date = (datetime.now() + timedelta(days=expiry_days)).date().isoformat()
entry.expiry_date = expiry_date
# Store data directly as JSON in database
# Different INSERT statement based on table structure
if table_name == 'calendar':
# Calendar table has event_type column
cursor.execute('''
INSERT INTO calendar
(entry_key, date, event_type, ticker, data, created_at, updated_at,
expiry_date, metadata)
VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s)
ON DUPLICATE KEY UPDATE
data = VALUES(data),
updated_at = VALUES(updated_at),
expiry_date = VALUES(expiry_date),
metadata = VALUES(metadata)
''', (
entry_key,
entry.date,
entry.data_type, # event_type (earnings, ipo, etc.)
entry.ticker,
json.dumps(self._clean_data_for_json(entry.data), default=str),
entry.created_at,
entry.updated_at,
entry.expiry_date,
json.dumps(entry.metadata)
))
else:
# News and fundamental_analysis tables don't have event_type
cursor.execute(f'''
INSERT INTO {table_name}
(entry_key, date, ticker, data, created_at, updated_at,
expiry_date, metadata)
VALUES (%s, %s, %s, %s, %s, %s, %s, %s)
ON DUPLICATE KEY UPDATE
data = VALUES(data),
updated_at = VALUES(updated_at),
expiry_date = VALUES(expiry_date),
metadata = VALUES(metadata)
''', (
entry_key,
entry.date,
entry.ticker,
json.dumps(self._clean_data_for_json(entry.data), default=str),
entry.created_at,
entry.updated_at,
entry.expiry_date,
json.dumps(entry.metadata)
))
conn.commit()
return True
except Exception as e:
print(f"Error saving entry {entry.ticker}: {e}")
return False
finally:
if 'cursor' in locals():
cursor.close()
if 'conn' in locals() and conn:
conn.close()
def save_batch(self, entries: List[DatabaseEntry], expiry_days: Optional[int] = None) -> int:
"""
Save multiple entries in batch. Updates existing entries if duplicates are found.
Args:
entries: List of DatabaseEntry objects
expiry_days: Optional expiry in days
Returns:
Number of successfully saved entries
"""
success_count = 0
conn = self._create_connection()
if not conn:
return 0
cursor = conn.cursor()
try:
for entry in entries:
try:
# CRITICAL: Check if ticker is in the available_tickers whitelist
# Skip check for economic events as they use country names as tickers
if entry.data_type != DataType.ECONOMIC_EVENTS.value and not self.is_ticker_available(entry.ticker):
print(f"⚠️ Skipping {entry.data_type} for {entry.ticker} - ticker not in available_tickers whitelist")
continue
entry_key = entry.generate_key()
table_name = self._get_table_name(entry.data_type)
# Check if entry already exists
cursor.execute(f'SELECT created_at FROM {table_name} WHERE entry_key = %s', (entry_key,))
existing = cursor.fetchone()
# Preserve original created_at if updating
if existing:
entry.created_at = str(existing[0])
# Update the updated_at timestamp
entry.updated_at = datetime.now().isoformat()
if expiry_days:
expiry_date = (datetime.now() + timedelta(days=expiry_days)).date().isoformat()
entry.expiry_date = expiry_date
# Store data directly in database - different format for calendar
if table_name == 'calendar':
cursor.execute('''
INSERT INTO calendar
(entry_key, date, event_type, ticker, data, created_at, updated_at,
expiry_date, metadata)
VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s)
ON DUPLICATE KEY UPDATE
data = VALUES(data),
updated_at = VALUES(updated_at),
expiry_date = VALUES(expiry_date),
metadata = VALUES(metadata)
''', (
entry_key,
entry.date,
entry.data_type, # event_type
entry.ticker,
json.dumps(self._clean_data_for_json(entry.data), default=str),
entry.created_at,
entry.updated_at,
entry.expiry_date,
json.dumps(entry.metadata)
))
else:
cursor.execute(f'''
INSERT INTO {table_name}
(entry_key, date, ticker, data, created_at, updated_at,
expiry_date, metadata)
VALUES (%s, %s, %s, %s, %s, %s, %s, %s)
ON DUPLICATE KEY UPDATE
data = VALUES(data),
updated_at = VALUES(updated_at),
expiry_date = VALUES(expiry_date),
metadata = VALUES(metadata)
''', (
entry_key,
entry.date,
entry.ticker,
json.dumps(self._clean_data_for_json(entry.data), default=str),
entry.created_at,
entry.updated_at,
entry.expiry_date,
json.dumps(entry.metadata)
))
success_count += 1
except Exception as e:
print(f"Error saving entry {entry.ticker}: {e}")
continue
conn.commit()
finally:
cursor.close()
conn.close()
return success_count
def save_signal(self, ticker: str, calendar_event_keys: List[str], news_keys: List[str],
fundamental_key: str, signal_position: str, sentiment: Dict = None) -> bool:
"""Save a generated signal to the database"""
try:
conn = self._create_connection()
if not conn:
return False
cursor = conn.cursor()
signal_date = datetime.now().date().isoformat()
signal_id = hashlib.md5(f"{ticker}_{signal_date}".encode()).hexdigest()
now = datetime.now()
# Merge with existing sentiment if provided
final_sentiment = sentiment
if sentiment:
cursor.execute("SELECT sentiment FROM signals WHERE signal_id = %s", (signal_id,))
existing = cursor.fetchone()
if existing and existing[0]:
existing_sentiment = json.loads(existing[0]) if isinstance(existing[0], str) else existing[0]
if isinstance(existing_sentiment, dict):
existing_sentiment.update(sentiment)
final_sentiment = existing_sentiment
cursor.execute('''
INSERT INTO signals
(signal_id, ticker, signal_date, signal_position, calendar_event_keys, news_keys,
fundamental_analysis_key, sentiment, created_at, updated_at, metadata)
VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)
ON DUPLICATE KEY UPDATE
signal_position = VALUES(signal_position),
calendar_event_keys = VALUES(calendar_event_keys),
news_keys = VALUES(news_keys),
fundamental_analysis_key = VALUES(fundamental_analysis_key),
sentiment = VALUES(sentiment),
updated_at = VALUES(updated_at)
''', (
signal_id,
ticker,
signal_date,
signal_position,
json.dumps(calendar_event_keys),
json.dumps(news_keys),
fundamental_key,
json.dumps(final_sentiment) if final_sentiment else None,
now,
now,
json.dumps({})
))
conn.commit()
return True
except Error as e:
print(f"❌ Error saving signal: {e}")
return False
finally:
if 'cursor' in locals():
cursor.close()
if 'conn' in locals():
conn.close()
def get_signal(self, ticker: str, date_str: str = None) -> Optional[Dict]:
"""Get signal for a ticker on a specific date (defaults to today)"""
try:
if not date_str:
date_str = datetime.now().date().isoformat()
conn = self._create_connection()
if not conn:
return None
cursor = conn.cursor(dictionary=True)
cursor.execute('''
SELECT * FROM signals
WHERE ticker = %s AND signal_date = %s
''', (ticker, date_str))
result = cursor.fetchone()
if result:
# Parse JSON fields
for field in ['calendar_event_keys', 'news_keys', 'metadata', 'sentiment']:
if result.get(field):
if isinstance(result[field], str):
result[field] = json.loads(result[field])
return result
except Error as e:
print(f"❌ Error getting signal: {e}")
return None
finally:
if 'cursor' in locals():
cursor.close()
if 'conn' in locals():
conn.close()
def get_recent_signals(self, limit: int = 50) -> List[Dict]:
"""Get most recent signals"""
try:
conn = self._create_connection()
if not conn:
return []
cursor = conn.cursor(dictionary=True)
cursor.execute('''
SELECT * FROM signals
ORDER BY created_at DESC
LIMIT %s
''', (limit,))
results = cursor.fetchall()
parsed_results = []
for result in results:
# Parse JSON fields
for field in ['calendar_event_keys', 'news_keys', 'metadata', 'sentiment']:
if result.get(field) and isinstance(result[field], str):
try:
result[field] = json.loads(result[field])
except:
pass
parsed_results.append(result)
return parsed_results
except Error as e:
print(f"❌ Error getting recent signals: {e}")
return []
finally:
if 'cursor' in locals():
cursor.close()
if 'conn' in locals():
conn.close()
def get(self, date_str: str, data_type: str, ticker: str) -> Optional[DatabaseEntry]:
"""
Retrieve entry by date, type, and ticker
Args:
date_str: Date in YYYY-MM-DD format
data_type: Data type (earnings, ipo, news, fundamental_analysis, etc.)
ticker: Stock ticker
Returns:
DatabaseEntry if found, None otherwise
"""
try:
# Generate key
key_string = f"{date_str}_{data_type}_{ticker}"
entry_key = hashlib.md5(key_string.encode()).hexdigest()
# Get table name for this data type
table_name = self._get_table_name(data_type)
conn = self._create_connection()
if not conn:
return None
cursor = conn.cursor()
# Different SELECT based on table structure
if table_name == 'calendar':
cursor.execute('''
SELECT date, event_type, ticker, data, created_at, updated_at, expiry_date, metadata
FROM calendar
WHERE entry_key = %s
''', (entry_key,))
else:
cursor.execute(f'''
SELECT date, ticker, data, created_at, updated_at, expiry_date, metadata
FROM {table_name}
WHERE entry_key = %s
''', (entry_key,))
result = cursor.fetchone()
cursor.close()
conn.close()
if not result:
return None
# Parse result based on table structure
if table_name == 'calendar':
date_val, event_type_val, ticker_val, data_json, created_at, updated_at, expiry_date, metadata_json = result
data_type_val = event_type_val # event_type is the data_type
else:
date_val, ticker_val, data_json, created_at, updated_at, expiry_date, metadata_json = result
data_type_val = data_type # Use the data_type parameter
# Check if expired
if expiry_date:
if str(expiry_date) < datetime.now().date().isoformat():
return None
# Parse JSON data from database
data_dict = json.loads(data_json) if isinstance(data_json, str) else data_json
metadata_dict = json.loads(metadata_json) if isinstance(metadata_json, str) else (metadata_json or {})
# Create DatabaseEntry
entry = DatabaseEntry(
date=str(date_val),
data_type=str(data_type_val),
ticker=str(ticker_val),
data=data_dict,
created_at=str(created_at),
updated_at=str(updated_at),
expiry_date=str(expiry_date) if expiry_date else None,
metadata=metadata_dict
)
return entry
except Exception as e:
print(f"Error retrieving entry: {e}")
return None
def query(self,
date_from: Optional[str] = None,
date_to: Optional[str] = None,
data_type: Optional[str] = None,
ticker: Optional[str] = None,
limit: Optional[int] = None,
include_expired: bool = False) -> List[DatabaseEntry]:
"""
Query database with flexible filters across all tables
Args:
date_from: Start date (inclusive)
date_to: End date (inclusive)
data_type: Filter by data type (e.g., 'earnings', 'news', 'fundamental_analysis')
ticker: Filter by ticker
limit: Max results
include_expired: Whether to include expired entries
Returns:
List of DatabaseEntry objects
"""
try:
conn = self._create_connection()
if not conn:
return []
cursor = conn.cursor()
entries = []
# Determine which tables to query
tables_to_query = []
if data_type:
# Query specific table based on data_type
table_name = self._get_table_name(data_type)
tables_to_query.append((table_name, data_type))
else:
# Query all tables
tables_to_query = [
('calendar', None), # Will get all calendar events
('news', 'news'),
('fundamental_analysis', 'fundamental_analysis')
]
# Query each table
for table_name, specific_type in tables_to_query:
params = []
if table_name == 'calendar':
# Calendar has event_type column
query = "SELECT date, event_type, ticker, data, created_at, updated_at, expiry_date, metadata FROM calendar WHERE 1=1"
if specific_type: # Specific calendar event type
query += " AND event_type = %s"
params.append(specific_type)
else:
# News and fundamental_analysis don't have event_type
query = f"SELECT date, ticker, data, created_at, updated_at, expiry_date, metadata FROM {table_name} WHERE 1=1"
if date_from:
query += " AND date >= %s"
params.append(date_from)
if date_to:
query += " AND date <= %s"
params.append(date_to)
if ticker:
query += " AND ticker = %s"
params.append(ticker)
if not include_expired:
query += " AND (expiry_date IS NULL OR expiry_date >= %s)"
params.append(datetime.now().date().isoformat())
query += " ORDER BY date DESC, created_at DESC"
if limit and len(tables_to_query) == 1:
# Only apply limit if querying a single table
query += f" LIMIT {limit}"
cursor.execute(query, tuple(params))
results = cursor.fetchall()
# Parse results based on table structure
for row in results:
try:
if table_name == 'calendar':
date_val, event_type_val, ticker_val, data_json, created_at, updated_at, expiry_date, metadata_json = row
data_type_val = event_type_val
else:
date_val, ticker_val, data_json, created_at, updated_at, expiry_date, metadata_json = row
data_type_val = specific_type
# Parse JSON data
data_dict = json.loads(data_json) if isinstance(data_json, str) else data_json
metadata_dict = json.loads(metadata_json) if isinstance(metadata_json, str) else (metadata_json or {})
entry = DatabaseEntry(
date=str(date_val),
data_type=str(data_type_val),
ticker=str(ticker_val),
data=data_dict,
created_at=str(created_at),
updated_at=str(updated_at),
expiry_date=str(expiry_date) if expiry_date else None,
metadata=metadata_dict
)
entries.append(entry)
except Exception as e:
print(f"Error loading entry from {table_name}: {e}")
continue
cursor.close()
conn.close()
# Sort all entries by date and apply limit if needed
entries.sort(key=lambda x: (x.date, x.created_at), reverse=True)
if limit:
entries = entries[:limit]
return entries
except Exception as e:
print(f"Error querying database: {e}")
return []
def delete(self, date_str: str, data_type: str, ticker: str) -> bool:
"""Delete entry by date, type, and ticker"""
try:
# Generate key
key_string = f"{date_str}_{data_type}_{ticker}"
entry_key = hashlib.md5(key_string.encode()).hexdigest()
table_name = self._get_table_name(data_type)
conn = self._create_connection()
if not conn:
return False
cursor = conn.cursor()
cursor.execute(f'DELETE FROM {table_name} WHERE entry_key = %s', (entry_key,))
conn.commit()
conn.close()
return True
except Exception as e:
print(f"Error deleting entry: {e}")
return False
def clean_expired(self) -> int:
"""Remove expired entries"""
try:
conn = self._create_connection()
if not conn:
return 0
cursor = conn.cursor()
total_cleaned = 0
for table_name in ['calendar', 'news', 'fundamental_analysis']:
cursor.execute(f'''
DELETE FROM {table_name}
WHERE expiry_date IS NOT NULL AND expiry_date < %s
''', (datetime.now().date().isoformat(),))
total_cleaned += cursor.rowcount
conn.commit()
conn.close()
print(f"✓ Cleaned {total_cleaned} expired entries")
return total_cleaned
except Exception as e:
print(f"Error cleaning expired entries: {e}")
return 0
def get_stats(self) -> Dict[str, Any]:
"""Get database statistics across all tables"""
try:
conn = self._create_connection()
if not conn:
return {}
cursor = conn.cursor()
# Initialize counters
total_entries = 0
by_type = {}
all_tickers = {}
total_size = 0
expired_count = 0
min_date = None
max_date = None
# Query each table
for table_name in ['calendar', 'news', 'fundamental_analysis']:
# Count entries
cursor.execute(f'SELECT COUNT(*) FROM {table_name}')
table_count = cursor.fetchone()[0]
total_entries += table_count
if table_name == 'calendar':
# Get counts by event_type
cursor.execute('SELECT event_type, COUNT(*) FROM calendar GROUP BY event_type')
for event_type, count in cursor.fetchall():
by_type[event_type] = count
else:
# For news and fundamental_analysis, use table name as type
by_type[table_name] = table_count
# Get ticker counts
cursor.execute(f'SELECT ticker, COUNT(*) FROM {table_name} GROUP BY ticker')
for ticker, count in cursor.fetchall():
all_tickers[ticker] = all_tickers.get(ticker, 0) + count
# Get data size
cursor.execute(f'SELECT SUM(LENGTH(data)) FROM {table_name}')
table_size = cursor.fetchone()[0] or 0
total_size += table_size
# Count expired entries
cursor.execute(f'''
SELECT COUNT(*) FROM {table_name}
WHERE expiry_date IS NOT NULL AND expiry_date < %s
''', (datetime.now().date().isoformat(),))
expired_count += cursor.fetchone()[0]
# Get date range
cursor.execute(f'SELECT MIN(date), MAX(date) FROM {table_name}')
table_date_range = cursor.fetchone()
if table_date_range[0]:
if min_date is None or table_date_range[0] < min_date:
min_date = table_date_range[0]
if max_date is None or table_date_range[1] > max_date:
max_date = table_date_range[1]
# Get top 10 tickers
top_tickers = dict(sorted(all_tickers.items(), key=lambda x: x[1], reverse=True)[:10])
conn.close()
stats = {
'total_entries': total_entries,
'by_type': by_type,
'top_tickers': top_tickers,
'total_size_bytes': total_size,
'total_size_mb': round(total_size / (1024 * 1024), 2),
'expired_entries': expired_count,
'date_range': {'from': str(min_date), 'to': str(max_date)} if min_date else None,
'compression': 'enabled' if self.compress else 'disabled'
}
return stats
except Exception as e:
print(f"Error getting stats: {e}")
return {}
def clear_all(self) -> bool:
"""Clear all data (use with caution!)"""
try:
conn = self._create_connection()
if not conn:
return False
cursor = conn.cursor()
# Truncate all tables
for table_name in ['calendar', 'news', 'fundamental_analysis', 'signals']:
cursor.execute(f'TRUNCATE TABLE {table_name}')
conn.commit()
conn.close()
print("✓ All data cleared")
return True
except Exception as e:
print(f"Error clearing data: {e}")
return False
# Global database instance
db_instance = None
def get_database(db_dir: str = "database", compress: bool = False) -> LocalDatabase:
"""Get or create database instance"""
global db_instance
if db_instance is None or db_instance.db_dir != Path(db_dir):
db_instance = LocalDatabase(db_dir=db_dir, compress=compress)
return db_instance