Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import pipeline | |
| classifier = pipeline("image-classification", model="XenArcAI/AIRealNet") | |
| def recognize(img): | |
| results = classifier(img) | |
| return {r["label"]: round(r["score"], 3) for r in results} | |
| with gr.Blocks() as demo: # removed theme for compatibility | |
| gr.Markdown( | |
| """ | |
| # **XenArcAI** | |
| # 🖼️ AIRealNet Image Recognition | |
| Upload an image and let **AIRealNet** identify what's inside. | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| inp = gr.Image(type="pil", label="Upload Image") | |
| btn = gr.Button("Run Recognition") | |
| with gr.Column(): | |
| out = gr.Label(num_top_classes=2, label="Predictions") | |
| examples = gr.Examples( | |
| examples=["examples/cat.jpg", "examples/dog.jpg", "examples/car.jpg"], | |
| inputs=inp | |
| ) | |
| btn.click(fn=recognize, inputs=inp, outputs=[out]) | |
| demo.launch() | |