AIRealNet / app.py
Parveshiiii's picture
Upload 2 files
1a87155 verified
import gradio as gr
from transformers import pipeline
classifier = pipeline("image-classification", model="XenArcAI/AIRealNet")
def recognize(img):
results = classifier(img)
return {r["label"]: round(r["score"], 3) for r in results}
with gr.Blocks() as demo: # removed theme for compatibility
gr.Markdown(
"""
# **XenArcAI**
# 🖼️ AIRealNet Image Recognition
Upload an image and let **AIRealNet** identify what's inside.
"""
)
with gr.Row():
with gr.Column():
inp = gr.Image(type="pil", label="Upload Image")
btn = gr.Button("Run Recognition")
with gr.Column():
out = gr.Label(num_top_classes=2, label="Predictions")
examples = gr.Examples(
examples=["examples/cat.jpg", "examples/dog.jpg", "examples/car.jpg"],
inputs=inp
)
btn.click(fn=recognize, inputs=inp, outputs=[out])
demo.launch()