File size: 129,349 Bytes
6340a04 5a17daa 3b1d3e4 9234fee 72c6506 ba30ad8 03c9319 e0840c1 3b1d3e4 c025409 3b1d3e4 e0840c1 3b1d3e4 e0840c1 65f9c2e c025409 dc9462d c025409 108fef3 3b1d3e4 669d1a0 3b1d3e4 72c6506 3b1d3e4 c025409 073b70a c025409 108fef3 3b1d3e4 0173d08 5a17daa b8fe16c 3b1d3e4 823ecbd 3b1d3e4 d75e4ca 8a0efe7 ef5d4f5 576cb78 ef5d4f5 3b1d3e4 108fef3 3b1d3e4 f4cc0f2 3b1d3e4 108fef3 3b1d3e4 72a5cc8 72c6506 3b1d3e4 6340a04 3b1d3e4 108fef3 3b1d3e4 5a17daa 3b1d3e4 5a17daa 8a338bb 72c6506 8a338bb 5a17daa 3b1d3e4 108fef3 72c6506 108fef3 a1b23f3 72c6506 a1b23f3 108fef3 3b1d3e4 d75e4ca 3b1d3e4 72c6506 3b1d3e4 72c6506 3b1d3e4 108fef3 3b1d3e4 108fef3 a1b23f3 3b1d3e4 108fef3 3b1d3e4 108fef3 3b1d3e4 108fef3 3b1d3e4 108fef3 3b1d3e4 98e243b 3b1d3e4 98e243b 3b1d3e4 108fef3 3b1d3e4 108fef3 3b1d3e4 108fef3 3b1d3e4 72c6506 3b1d3e4 72c6506 3b1d3e4 72c6506 5a17daa 72c6506 5a17daa 72c6506 5a17daa 3b1d3e4 72c6506 3b1d3e4 72c6506 3b1d3e4 5a17daa 3b1d3e4 5a17daa 3b1d3e4 5a17daa 3b1d3e4 5a17daa 3b1d3e4 0ac37e6 3b1d3e4 cbb9019 0ac37e6 cbb9019 0ac37e6 cbb9019 3b1d3e4 0ac37e6 3b1d3e4 72c6506 5a17daa 72c6506 5a17daa 3b1d3e4 5a17daa 72c6506 3b1d3e4 4c369a1 108fef3 5a17daa b3a111a 72c6506 3b1d3e4 5a17daa 72c6506 3b1d3e4 e0840c1 e626fcb e0840c1 6fbd74c 5a17daa 3b1d3e4 108fef3 3b1d3e4 108fef3 3b1d3e4 108fef3 3b1d3e4 108fef3 3b1d3e4 72c6506 be4c36b 72c6506 be4c36b 72c6506 be4c36b 3b1d3e4 5a17daa 3b1d3e4 72c6506 cbb9019 dc9462d 3b1d3e4 108fef3 458788d f131f5d 72c6506 f131f5d 458788d f131f5d 458788d dc9462d 72c6506 f131f5d 458788d f131f5d 458788d 6fbd74c f131f5d 9e1a758 72c6506 9e1a758 72c6506 9e1a758 f131f5d 8ee2b69 108fef3 f131f5d e32d954 073b70a e32d954 8ee2b69 073b70a e32d954 6340a04 8ee2b69 6340a04 8ee2b69 6340a04 72c6506 edca38c 6fe3e17 8ee2b69 073b70a 8ee2b69 620f5d9 a6a11fd 72c6506 8ee2b69 10e137f dc9462d 5a17daa a1b23f3 5a17daa fc0455b 5a17daa a1b23f3 5a17daa a1b23f3 5a17daa a1b23f3 5a17daa a1b23f3 5a17daa a1b23f3 3b1d3e4 6fbd74c 72c6506 620f5d9 72c6506 620f5d9 72c6506 620f5d9 72c6506 620f5d9 3b1d3e4 72c6506 3b1d3e4 5a17daa 3b1d3e4 823ecbd 5a17daa 3b1d3e4 72c6506 3b1d3e4 823ecbd 5a17daa 3b1d3e4 5a17daa 3b1d3e4 5a17daa 72c6506 3b1d3e4 823ecbd 3b1d3e4 78a867a 3b1d3e4 10e137f 9e1a758 72c6506 62997fb 9e1a758 10e137f 9e1a758 6340a04 be4c36b 6340a04 be4c36b 10e137f 72c6506 10e137f be4c36b 62997fb 7d0c20d 6340a04 5a17daa be4c36b d45a637 b2e9fda d45a637 72c6506 be4c36b 5a17daa be4c36b 7d0c20d 6340a04 7d0c20d 6340a04 be4c36b 72c6506 be4c36b e0840c1 be4c36b 3b1d3e4 be4c36b 9e116af 72c6506 be4c36b d45a637 be4c36b 9e116af be4c36b 5a17daa 10e137f be4c36b 10e137f be4c36b 99f4795 108fef3 a353bb0 be4c36b 10e137f 99f4795 10e137f be4c36b 99f4795 a6a11fd 99f4795 be4c36b a6a11fd 6fbd74c 7428a11 99f4795 0173d08 fc4f0a2 99f4795 fc4f0a2 99f4795 6fbd74c 073b70a 99f4795 823ecbd 99f4795 823ecbd 073b70a 823ecbd 99f4795 823ecbd be4c36b 8afe3fb be4c36b 72c6506 be4c36b 72c6506 be4c36b 073b70a be4c36b 72c6506 be4c36b 073b70a be4c36b 72c6506 be4c36b 72c6506 d45a637 073b70a d45a637 be4c36b e0840c1 fc4f0a2 073b70a fc4f0a2 e0840c1 073b70a e0840c1 fc4f0a2 e0840c1 be4c36b 073b70a 72a871c be4c36b 72c6506 be4c36b fc4f0a2 6fbd74c 72a871c fc4f0a2 6fbd74c fc4f0a2 6fbd74c e0840c1 be4c36b 72a871c be4c36b b2e9fda be4c36b 62997fb be4c36b 823ecbd be4c36b fc4f0a2 be4c36b fc4f0a2 be4c36b fc4f0a2 be4c36b 72c6506 be4c36b e626fcb 41f7baf e626fcb 823ecbd 99f4795 b2e9fda 72a871c b2e9fda 72a871c b2e9fda 72a871c b2e9fda 823ecbd d45a637 823ecbd 5957e23 72a871c 823ecbd 72c6506 be4c36b 823ecbd e0840c1 c025409 e0840c1 c025409 823ecbd be4c36b 9e116af be4c36b 9e116af be4c36b 9e116af be4c36b 9e116af be4c36b 9e116af be4c36b 823ecbd be4c36b 823ecbd 9484b85 c025409 9484b85 dc9462d c025409 9484b85 c025409 41f7baf dc9462d 57d1cec 41f7baf dc9462d d45a637 72c6506 be4c36b 458788d fc4f0a2 5957e23 fc4f0a2 5957e23 fc4f0a2 5957e23 458788d fc4f0a2 823ecbd c025409 b2e9fda c025409 5957e23 72a871c c025409 823ecbd c025409 823ecbd fc4f0a2 823ecbd 72c6506 823ecbd c025409 823ecbd c025409 823ecbd c025409 823ecbd c025409 823ecbd c025409 823ecbd dc9462d 823ecbd dc9462d c025409 dc9462d 823ecbd c025409 8a0efe7 5a17daa 8a0efe7 5a17daa 4e1f34b 5a17daa c025409 4e1f34b c025409 8afe3fb 108fef3 4e1f34b c025409 5a17daa 8afe3fb 5a17daa e0860dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# HIVE 🐝 FULL MERGED ALL-IN-ONE **OPTIMIZED**
# Offline-first + Online updates + Auto Wi-Fi + RBAC + Multilingual Voice (ASR/TTS + Phonics)
# + Internal Optimization Stack (Change Manager: propose ➡️ sandbox ➡️ A/B test ➡️ apply/rollback with Owner policy)
# Upload this single file and requirements.txt to a Hugging Face Space (or run locally).
# - python app.py
# --- BEGIN MEMORY MANIFEST (auto-updated) ---
# (This block is auto-written by Hive to record what datasets/files
# have already been converted into memory (curves). Do not edit by hand.)
MEMORY_MANIFEST = {
"updated_ts": 0,
"datasets_done": [],
"vectors_total": 0,
"notes": "Set HIVE_ALLOW_SELF_WRITE_MANIFEST=0 to stop auto-updates."
}
# --- END MEMORY MANIFEST ---
import os, sys, re, json, time, shutil, tempfile, subprocess, platform, socket, threading, importlib, hashlib, unicodedata, urllib.request, base64, random
from dataclasses import dataclass, field
from typing import Optional, List, Dict, Tuple
from pathlib import Path as _Path
# IMPORTANT: Import FAISS first to avoid segmentation faults on some systems.
# This is a known issue where FAISS needs to be imported before other libraries
# like numpy or torch that might use conflicting low-level libraries.
# ----------- light bootstrap (safe) -----------
def _ensure(pkgs: List[str]):
for p in pkgs: # type: ignore
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", p], stdout=sys.stdout, stderr=sys.stderr)
except Exception:
print(f"Could not install {p}. Please check the output above for details.")
try:
import faiss
except (ImportError, ModuleNotFoundError):
_ensure(["faiss-cpu>=1.8.0"])
import faiss
_ensure(["numpy>=1.24.0", "psutil==5.9.8", "requests>=2.31.0", "gradio>=4.44.0", "sentence-transformers>=3.0.0", "faiss-cpu>=1.8.0",
"transformers>=4.44.0", "accelerate>=0.33.0", "datasets>=2.21.0", "soundfile>=0.12.1", "faster-whisper>=1.0.0", "langid>=1.1.6", "webrtcvad>=2.0.10",
"huggingface-hub>=0.23.0,<1.0", "piper-tts>=1.2.0", "g2p_en>=2.1.0", "librosa>=0.10.1", "scikit-learn>=1.1.0", "feedparser>=6.0.11", "duckduckgo-search>=6.2.10",
"keyring>=24.3.1"])
import collections, logging
import numpy as np, psutil, requests, feedparser, langid, librosa, gradio as gr, soundfile as sf, struct, queue
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from faster_whisper import WhisperModel
from piper.voice import PiperVoice
from duckduckgo_search import DDGS
from g2p_en import G2p
from sklearn.metrics.pairwise import cosine_similarity
from concurrent.futures import ThreadPoolExecutor
# --- Setup Logging ---
logging.basicConfig(
level=logging.INFO,
format='[%(asctime)s] [%(levelname)s] [%(threadName)s] %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
stream=sys.stdout,
force=True
)
try:
import pvporcupine
_HAVE_PVP=True
except ImportError:
_HAVE_PVP=False
try:
import webrtcvad
_HAVE_VAD=True
except ImportError:
_HAVE_VAD=False
try:
import torch
except Exception:
torch=None
from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
class StopOnTokens(StoppingCriteria):
def __init__(self, stop_token_ids: List[int]):
self.stop_token_ids = stop_token_ids
def __call__(self, input_ids: "torch.LongTensor", scores: "torch.FloatTensor", **kwargs) -> bool:
for stop_id in self.stop_token_ids:
if input_ids[0][-1] == stop_id:
return True
return False
try:
import faiss
except Exception:
subprocess.check_call([sys.executable,"-m","pip","install","--upgrade","faiss-cpu>=1.8.0"])
import faiss
# Optional vision
try:
import cv2; _HAVE_CV=True
except Exception:
_HAVE_CV=False
try:
from PIL import Image
import pytesseract; _HAVE_TESS=True and _HAVE_CV
except Exception:
_HAVE_TESS=False
try:
import keyring
except Exception:
keyring=None
# ----------------------- config -----------------------
def ENV(name, default=None, cast=str):
v=os.getenv(name, default)
if v is None: return None
if cast is bool: return str(v).lower() in ("1","true","yes","on")
if cast is int:
try: return int(v) # type: ignore
except (ValueError, TypeError): return int(float(v))
return v
CFG={
# auto-archive memory to curves.tar.gz
"HIVE_AUTO_ARCHIVE": ENV("HIVE_AUTO_ARCHIVE", "1", bool),
"HIVE_AUTO_ARCHIVE_MODE": ENV("HIVE_AUTO_ARCHIVE_MODE", "per_chain", str), # per_chain | per_dataset
"HIVE_ARCHIVE_PATH": ENV("HIVE_ARCHIVE_PATH", "curves.tar.gz", str),
# staged ingestion chaining (auto-run multiple stages this boot)
"HIVE_INGEST_CHAIN": ENV("HIVE_INGEST_CHAIN", "1", bool),
"HIVE_INGEST_CHAIN_MAX": ENV("HIVE_INGEST_CHAIN_MAX", "2", int), # max stages per boot
# staged ingestion controls
"HIVE_INGEST_STAGED": ENV("HIVE_INGEST_STAGED", "1", bool),
"HIVE_INGEST_STAGE_SIZE": ENV("HIVE_INGEST_STAGE_SIZE", "3", int),
"HIVE_INGEST_MIN_FREE_GB": ENV("HIVE_INGEST_MIN_FREE_GB", "8", int),
"HIVE_INGEST_NEXT": ENV("HIVE_INGEST_NEXT", "0", bool),
# self-edit manifest controls
"HIVE_ALLOW_SELF_WRITE_MANIFEST": ENV("HIVE_ALLOW_SELF_WRITE_MANIFEST", "1", bool),
"HIVE_SELF_WRITE_FILE": ENV("HIVE_SELF_WRITE_FILE", "", str),
# memory auto-restore controls (admin memory)
"CURVES_AUTO_RESTORE": ENV("HIVE_CURVES_AUTO_RESTORE", "1", bool),
"CURVES_ARCHIVE_LOCAL": ENV("HIVE_CURVES_ARCHIVE_LOCAL", "curves.tar.gz", str),
"CURVES_ARCHIVE_URL": ENV("HIVE_CURVES_ARCHIVE_URL", "", str),
"CURVES_HF_DATASET": ENV("HIVE_CURVES_HF_DATASET", "", str),
"CURVES_HF_SUBPATH": ENV("HIVE_CURVES_HF_SUBPATH", "", str),
"HF_READ_TOKEN": ENV("HF_READ_TOKEN", "", str),
# memory directory alias
"HIVE_HOME": ENV("HIVE_HOME", "/home/hive/hive_data" if os.path.exists("/home/hive") else "./hive_data"), # type: ignore
"CURVE_DIR": os.path.join(ENV("HIVE_HOME", "/home/hive/hive_data" if os.path.exists("/home/hive") else "./hive_data"), "curves"), # type: ignore
"STATE_DIR": os.path.join(ENV("HIVE_HOME", "/home/hive/hive_data" if os.path.exists("/home/hive") else "./hive_data"), "system"), # type: ignore
"LAUNCH_UI": ENV("HIVE_LAUNCH_UI","1",bool),
"LLM_AUTOSIZE": ENV("HIVE_LLM_AUTOSIZE", "1", bool), # type: ignore
"LLM_MAX_VRAM_GB": ENV("HIVE_LLM_MAX_VRAM_GB","0", int),
"MODEL_OVERRIDE": ENV("HIVE_MODEL_ID",""),
"CTX_TOKENS": ENV("HIVE_CTX_TOKENS","2048",int),
"OWNER_NAME": ENV("HIVE_OWNER_USER","Rose"),
"OWNER_PASS": ENV("HIVE_OWNER_PASS","Fehr2008"),
"OWNER_SECOND": ENV("HIVE_OWNER_SECOND","Paulbear01"),
"AGENT_NAME": ENV("HIVE_AGENT_NAME","Hive"),
"NO_PROFANITY": ENV("HIVE_NO_PROFANITY","1",bool),
"ASR_SIZE": ENV("HIVE_ASR_SIZE","small"),
"TTS_LANG": ENV("HIVE_TTS_LANG","en"),
"BOOTSTRAP_INGEST": ENV("HIVE_BOOTSTRAP_INGEST","1",bool),
"FORCE_REINGEST": ENV("HIVE_FORCE_REINGEST","0",bool),
"INGEST_SOURCES": ENV("HIVE_INGEST_SOURCES",""),
"ONLINE_ENABLE": ENV("HIVE_ONLINE_ENABLE","1",bool),
"ONLINE_AUTO": ENV("HIVE_ONLINE_AUTO","0",bool),
"ONLINE_SOURCES": ENV("HIVE_ONLINE_SOURCES","https://hnrss.org/frontpage,https://rss.nytimes.com/services/xml/rss/nyt/World.xml"),
"ONLINE_TIMEOUT": ENV("HIVE_ONLINE_TIMEOUT","8",int),
"ONLINE_MAX_RESULTS": ENV("HIVE_ONLINE_MAX_RESULTS","5",int),
"ONLINE_TRIGGER": ENV("HIVE_ONLINE_TRIGGER","auto",str),
# bounded self governance
"HIVE_USE_HF_INFERENCE": ENV("HIVE_USE_HF_INFERENCE","0",bool),
"HIVE_HF_ENDPOINT": ENV("HIVE_HF_ENDPOINT","",str),
"ALLOW_SELF_REBOOT": ENV("HIVE_ALLOW_SELF_REBOOT","1",bool),
"ALLOW_RUNTIME_HOTPATCH": ENV("HIVE_ALLOW_RUNTIME_HOTPATCH", "1", bool),
"AUTO_SELF_OPTIMIZE": ENV("HIVE_AUTO_SELF_OPTIMIZE","1",bool),
"PVPORCUPINE_ACCESS_KEY": ENV("HIVE_PVPORCUPINE_ACCESS_KEY", "", str),
"HIVE_WAKE_WORDS": ENV("HIVE_WAKE_WORDS", "bumblebee", str), # Default wake word
"VIDEO_ENABLED": ENV("HIVE_VIDEO_ENABLED", "0", bool), # Add this line
# internal optimization with sandbox + A/B (Owner policy)
"OPT_ENABLE": ENV("HIVE_OPT_ENABLE","1",bool),
"OPT_AUTO_APPLY": ENV("HIVE_OPT_AUTO_APPLY","0",bool), # OWNER MAY SET TO 1
"OPT_PKG_ALLOWLIST": ENV("HIVE_OPT_PKG_ALLOWLIST","transformers,accelerate,datasets,sentence-transformers,faiss-cpu,duckduckgo_search,feedparser,requests,gradio").split(","),
"OPT_MODEL_ALLOWLIST": ENV("HIVE_OPT_MODEL_ALLOWLIST","meta-llama/Meta-Llama-3.1-8B-Instruct,meta-llama/Meta-Llama-3.1-70B-Instruct,TinyLlama/TinyLlama-1.1B-Chat-v1.0").split(","),
"OPT_THRESH_LATENCY_MS": ENV("HIVE_OPT_THRESH_LATENCY_MS","0",int),
"OPT_THRESH_TOKS_PER_S": ENV("HIVE_OPT_THRESH_TOKS_PER_S","0",float),
"OPT_THRESH_QUALITY": ENV("HIVE_OPT_THRESH_QUALITY","0.02",float),
"OPT_SANDBOX_TIMEOUT": ENV("HIVE_OPT_SANDBOX_TIMEOUT","180",int),
}
CFG["VOICE_ASR_MODEL"] = CFG["ASR_SIZE"] # Alias for backward compatibility
HIVE_INSTANCE = None
CFG['VAD_ENERGY_THRESHOLD'] = 300
CFG['VAD_SILENCE_DURATION'] = 1.0
CFG['VAD_MIN_SPEECH_DURATION'] = 0.2
CFG['VOICE_VAD_AGGRESSIVENESS'] = 2 # Default VAD aggressiveness
# Create all necessary directories based on the new specification
HIVE_HOME = CFG["HIVE_HOME"] # type: ignore
DIRS_TO_CREATE = [
os.path.join(HIVE_HOME, "curves"),
os.path.join(HIVE_HOME, "knowledge", "chunks"),
os.path.join(HIVE_HOME, "knowledge", "embeddings"),
os.path.join(HIVE_HOME, "users", "conversations"),
os.path.join(HIVE_HOME, "users", "sessions"),
os.path.join(HIVE_HOME, "system", "logs"),
os.path.join(HIVE_HOME, "system", "backups"),
os.path.join(HIVE_HOME, "voice", "asr_models"),
os.path.join(HIVE_HOME, "voice", "tts_models"),
os.path.join(HIVE_HOME, "voice", "voiceprints"),
os.path.join(HIVE_HOME, "voice", "samples"),
os.path.join(HIVE_HOME, "admin", "logs"),
os.path.join(HIVE_HOME, "packages"),
]
for d in DIRS_TO_CREATE: os.makedirs(d, exist_ok=True)
OVERLAY_DIR = os.path.join(HIVE_HOME, "system", "overlay")
OPT_DIR = os.path.join(HIVE_HOME, "system", "opt")
OPT_PROPOSALS = os.path.join(OPT_DIR, "proposals.jsonl")
OPT_RESULTS = os.path.join(OPT_DIR, "results.jsonl")
for p in (OVERLAY_DIR, OPT_DIR):
os.makedirs(p, exist_ok=True)
# ----------------- sensing / model pick -----------------
class EnvDetector:
"""Implements the Environment Detector and Capability Profiler from Part 1, Section 4."""
def _has_gpu_env(self) -> bool:
accel = os.getenv("SPACE_ACCELERATOR", "").lower()
if accel in ("t4", "a10", "a100", "l4", "l40", "h100"): return True
try:
return torch is not None and torch.cuda.is_available()
except Exception:
return False
def _detect_display(self) -> bool:
if _os_name() == 'linux':
return bool(os.environ.get('DISPLAY')) or os.path.exists('/dev/fb0')
return False # Simplified for other OSes
def _detect_camera(self) -> bool:
if _os_name() == 'linux':
return any(os.path.exists(f'/dev/video{i}') for i in range(4))
return False
def _detect_audio_input(self) -> bool:
# This is a heuristic; a more robust check would use sounddevice or similar
return True
def probe(self) -> Dict[str, any]:
total_ram_gb = psutil.virtual_memory().total / (1024**3)
is_pi = 'raspberrypi' in platform.machine().lower()
profile = {
"device_type": "raspberry_pi" if is_pi else "generic_linux",
"arch": platform.machine(),
"total_ram_gb": round(total_ram_gb, 1),
"free_ram_gb": round(psutil.virtual_memory().available / (1024**3), 1),
"has_gpu": self._has_gpu_env(),
"has_display": self._detect_display(),
"has_camera": self._detect_camera(),
"has_microphone": self._detect_audio_input(),
"network_up": NET.online_quick(),
"is_low_memory": total_ram_gb < 6,
"max_docs": 70000 if total_ram_gb > 16 else (50000 if total_ram_gb > 8 else 12000),
"batch": 512 if total_ram_gb > 16 else (256 if total_ram_gb > 8 else 64)
}
return profile
def probe_caps():
return EnvDetector().probe()
CANDIDATES=[("TinyLlama/TinyLlama-1.1B-Chat-v1.0",0),("meta-llama/Meta-Llama-3.1-8B-Instruct",12),("meta-llama/Meta-Llama-3.1-70B-Instruct",100)]
def pick_model(caps: Dict[str, any]) -> Tuple[str, dict]: # type: ignore
"""Always selects TinyLlama for simplicity in this version."""
model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
device = "cuda" if _has_gpu_env() else "cpu"
return model_id, {"device": device}
# ----------------- embeddings / curves -----------------
_EMB_ID=os.getenv("HIVE_EMB_ID","sentence-transformers/all-MiniLM-L6-v2")
class GEC:
def __init__(self):
device = "cuda" if EnvDetector()._has_gpu_env() else "cpu"
self.model=SentenceTransformer(_EMB_ID).to(device)
def encode(self, texts: List[str]): return self.model.encode(texts, normalize_embeddings=True)
class CurveStore:
def __init__(self, d):
self.dir=d; os.makedirs(d, exist_ok=True)
self.idx_path=os.path.join(d,"faiss.index")
self.meta_path=os.path.join(d,"meta.jsonl")
self.dim=384; self.gec=GEC()
self.index=faiss.read_index(self.idx_path) if os.path.exists(self.idx_path) else faiss.IndexFlatIP(self.dim)
def add_texts(self, docs:List[str], metas:List[Dict]):
# This is the old, direct-to-FAISS method. It will be deprecated by the new KnowledgeStore.
# For now, we keep it for compatibility with existing code paths but new ingestion should use KnowledgeStore.
# The new KnowledgeStore will handle chunking, manifest updates, and background embedding.
# This method will be refactored to be a part of the background embedding worker.
if not docs: return
vecs=np.asarray(self.gec.encode(docs), dtype="float32")
self.index.add(vecs)
with open(self.meta_path,"a",encoding="utf-8") as f:
for m in metas: f.write(json.dumps(m, ensure_ascii=False)+"\n")
faiss.write_index(self.index, self.idx_path)
def search(self, query:str, k:int=6)->List[Dict]:
if self.index.ntotal==0: return []
qv=np.asarray(self.gec.encode([query]), dtype="float32")
D,I=self.index.search(qv,k)
lines=open(self.meta_path,"r",encoding="utf-8").read().splitlines() if os.path.exists(self.meta_path) else []
out=[]
for i in I[0]:
if 0<=i<len(lines):
try: out.append(json.loads(lines[i])) # type: ignore
except json.JSONDecodeError: pass # type: ignore
return out
def search_with_scores(self, query:str, k:int=6):
if self.index.ntotal == 0: return [], []
qv=np.asarray(self.gec.encode([query]), dtype="float32")
D,I=self.index.search(qv,k) # type: ignore
lines=open(self.meta_path,"r",encoding="utf-8").read().splitlines() if os.path.exists(self.meta_path) else []
metas, scores = [], [] # type: ignore
query_len = len(query.split())
for idx, sc in zip(I[0], D[0]):
if 0<=idx<len(lines):
try:
meta = json.loads(lines[idx])
# Penalize long snippets for short queries to avoid irrelevant context.
text_len = len(meta.get("text", "").split())
penalty = 0.0
if query_len < 4 and text_len > 100:
penalty = 0.15 * (min(text_len, 400) / 400) # Penalize up to 0.15
metas.append(meta)
scores.append(float(max(0.0, min(1.0, (sc if sc is not None else 0.0) - penalty)))) # type: ignore
except: pass
return metas, scores
OFFLINE_MARK = os.path.join(CFG["CURVE_DIR"], ".offline_ready")
def _curves_ready(curve_dir:str)->bool:
idx=os.path.join(curve_dir,"faiss.index")
if os.path.exists(OFFLINE_MARK):
try: return json.load(open(OFFLINE_MARK)).get("ok",True)
except Exception: return True
if os.path.exists(idx):
try: return faiss.read_index(idx).ntotal>0
except Exception: return False
return False
def _mark_offline_ready():
try: json.dump({"ok":True,"ts":time.time()}, open(OFFLINE_MARK,"w",encoding="utf-8"))
except Exception: pass
# ----------- HF Datasets bootstrap -----------
DEFAULT_SOURCES=["jhu-clsp/jflue","bea2019st/wi_locness","fce-m2109/mascorpus","rajpurkar/squad_v2",
"OpenRL/daily_dialog","tetti/spelling-dataset-extended","Helsinki-NLP/opus-100","facebook/flores",
"HuggingFaceH4/no_robots","bigscience/xP3","allenai/sciq","allenai/c4",
"mozilla-foundation/common_voice_17_0","bene-ges/en_cmudict","openslr/librispeech_asr","conceptnet5/conceptnet5","grammarly/coedit"]
def _atomic_write_json(path, data):
tmp = str(path) + f".tmp_{int(time.time())}"
with open(tmp, 'w', encoding='utf-8') as f:
json.dump(data, f, ensure_ascii=False, indent=2)
os.replace(tmp, path)
def _load_json(path, default):
if os.path.exists(path):
try:
with open(path, "r", encoding="utf-8") as f:
return json.load(f)
except (json.JSONDecodeError, IOError):
return default
return default
def _save_json(path, data):
# This function is not defined in the provided code. Assuming it should be _atomic_write_json
_atomic_write_json(path, data)
class KnowledgeStore:
def __init__(self, storage_path: str):
self.base = _Path(storage_path)
self.knowledge_dir = self.base / "knowledge"
self.chunks_dir = self.knowledge_dir / "chunks"
self.curves_dir = self.base / "curves"
for d in [self.knowledge_dir, self.chunks_dir, self.curves_dir]:
d.mkdir(parents=True, exist_ok=True)
self.manifest_path = self.knowledge_dir / "knowledge_manifest.json"
self.embedding_queue_path = self.knowledge_dir / "embedding_queue.jsonl"
self._lock = threading.RLock()
self._load_manifest()
def _load_manifest(self):
with self._lock:
if self.manifest_path.exists():
try:
with open(self.manifest_path, 'r', encoding='utf-8') as f:
self.manifest = json.load(f)
except json.JSONDecodeError:
self.manifest = self._default_manifest()
else:
self.manifest = self._default_manifest()
self._save_manifest()
def _default_manifest(self):
return {
"total_chunks": 0, "total_texts": 0, "chunks_by_tag": {},
"chunks_by_scope": {}, "chunk_index": {}, "last_vector_build": 0,
"vector_count": 0
}
def _save_manifest(self):
with self._lock:
_atomic_write_json(self.manifest_path, self.manifest)
def _normalize_text(self, text: str) -> str:
return unicodedata.normalize("NFC", text).strip()
def _chunk_text(self, text: str, target_size: int = 1000) -> List[str]:
# Simple sentence-based chunking for now.
sentences = re.split(r'(?<=[.!?])\s+', text)
chunks, current_chunk = [], ""
for sentence in sentences:
if len(current_chunk) + len(sentence) + 1 > target_size:
if current_chunk: chunks.append(current_chunk)
current_chunk = sentence
else:
current_chunk += (" " + sentence) if current_chunk else sentence
if current_chunk: chunks.append(current_chunk)
return chunks
def ingest_text(self, text: str, tag: str="ingest", scope: str="general", metadata: Optional[Dict]=None) -> Optional[str]:
with self._lock:
normalized = self._normalize_text(text)
if not normalized: return None
texts = self._chunk_text(normalized)
if not texts: return None
chunk_id = f"chunk_{int(time.time())}_{hashlib.sha1(texts[0].encode('utf-8')).hexdigest()[:8]}"
chunk_data = {
"chunk_id": chunk_id, "timestamp": time.time(), "tag": tag, "scope": scope,
"text_count": len(texts), "texts": texts, "metadata": metadata or {},
"quality_score": 0.7, "importance_score": 0.5, # Defaults
"embeddings_generated": False
}
chunk_file = self.chunks_dir / f"{chunk_id}.json"
_atomic_write_json(chunk_file, chunk_data)
# Update manifest
self.manifest["total_chunks"] += 1
self.manifest["total_texts"] += len(texts)
self.manifest.setdefault("chunks_by_tag", {}).setdefault(tag, []).append(chunk_id)
self.manifest.setdefault("chunks_by_scope", {}).setdefault(scope, []).append(chunk_id)
self.manifest.setdefault("chunk_index", {})[chunk_id] = {
"timestamp": chunk_data["timestamp"], "tag": tag, "scope": scope,
"text_count": len(texts), "quality_score": chunk_data["quality_score"]
}
self._save_manifest()
# Enqueue for embedding
with open(self.embedding_queue_path, "a", encoding="utf-8") as f:
f.write(json.dumps({"chunk_id": chunk_id, "status": "queued"}) + "\n")
return chunk_id
# ----------- voice: ASR/TTS/phonics -----------
G2P = G2p()
class ASRService:
"""Handles ASR, including transcription and language detection."""
def __init__(self):
# This will be initialized in the VoiceServicesModule
self.model = get_asr()
def transcribe(self, audio_path: str, uid: Optional[str], forced_lang: Optional[str] = None) -> dict:
prior = _load_json(ADAPT_DB, {}).get(uid or "guest", {}).get("lang_prior")
language = forced_lang or prior or None
# Assuming get_asr() returns a valid model object
segs, info = self.model.transcribe(audio_path, language=language, beam_size=5, vad_filter=True)
text = " ".join([s.text for s in segs]).strip()
detected_lang = info.language
if not forced_lang and text:
prof = _load_json(ADAPT_DB, {})
p = prof.get(uid or "guest", {})
p["lang_prior"] = detected_lang
prof[uid or "guest"] = p
_save_json(ADAPT_DB, prof)
return {"text": text, "language": detected_lang, "confidence": info.language_probability, "segments": [{"start": s.start, "end": s.end, "text": s.text} for s in segs]}
ASR_MODELS={"tiny":"tiny","base":"base","small":"small","medium":"medium","large":"large-v3"}
def _asr_model_name(): return ASR_MODELS.get(CFG["VOICE_ASR_MODEL"],"small")
_ASR=None
def get_asr():
global _ASR
if _ASR is not None: return _ASR
size=_asr_model_name(); device="cuda" if (_has_gpu_env()) else "cpu"
compute_type="float16" if device=="cuda" else "int8"
_ASR=WhisperModel(size, device=device, compute_type=compute_type); return _ASR
PIPER_MODELS={
"en": ("https://huggingface.co/rhasspy/piper-voices/resolve/main/en/en_US/amy/low/en_US-amy-low.onnx",
"https://huggingface.co/rhasspy/piper-voices/resolve/main/en/en_US/amy/low/en_US-amy-low.onnx.json"),
"es": ("https://huggingface.co/rhasspy/piper-voices/resolve/main/es/es_ES/davefx/medium/es_ES-davefx-medium.onnx",
"https://huggingface.co/rhasspy/piper-voices/resolve/main/es/es_ES/davefx/medium/es_ES-davefx-medium.onnx.json"),
"fr": ("https://huggingface.co/rhasspy/piper-voices/resolve/main/fr/fr_FR/gilles/medium/fr_FR-gilles-medium.onnx",
"https://huggingface.co/rhasspy/piper-voices/resolve/main/fr/fr_FR/gilles/medium/fr_FR-gilles-medium.onnx.json"),
"de": ("https://huggingface.co/rhasspy/piper-voices/resolve/main/de/de_DE/thorsten-deepbinner/low/de_DE-thorsten-deepbinner-low.onnx",
"https://huggingface.co/rhasspy/piper-voices/resolve/main/de/de_DE/thorsten-deepbinner/low/de_DE-thorsten-deepbinner-low.onnx.json"),
"zh": ("https://huggingface.co/rhasspy/piper-voices/resolve/main/zh/zh_CN/huayan/low/zh_CN-huayan-low.onnx",
"https://huggingface.co/rhasspy/piper-voices/resolve/main/zh/zh_CN/huayan/low/zh_CN-huayan-low.onnx.json"),
}
def _download(url,dst, timeout=30): # type: ignore
if os.path.exists(dst): return dst
os.makedirs(os.path.dirname(dst),exist_ok=True); urllib.request.urlretrieve(url,dst); return dst # TODO: add timeout
_TTS_CACHE={}
def get_tts(lang: str = "en") -> PiperVoice: # type: ignore
lang=lang if lang in PIPER_MODELS else "en"
if lang in _TTS_CACHE: return _TTS_CACHE[lang]
mu,cu=PIPER_MODELS[lang]; m=_download(mu,f"./models/piper/{os.path.basename(mu)}"); c=_download(cu,f"./models/piper/{os.path.basename(cu)}")
v=PiperVoice.load(m,c); _TTS_CACHE[lang]=v; return v
def _embed_mfcc(path)->np.ndarray:
y, sr = librosa.load(path, sr=16000)
mf=librosa.feature.mfcc(y=y, sr=sr, n_mfcc=20)
return mf.mean(axis=1)
def enroll_voice(uid:str, path:str) -> bool:
db=_load_json(VOICES_DB, {}); db[uid]=_embed_mfcc(path).astype(float).tolist(); _save_json(VOICES_DB, db); return True
def identify_voice(path:str, threshold:float=0.70) -> Optional[str]:
db=_load_json(VOICES_DB, {});
if not db: return None
emb=_embed_mfcc(path).reshape(1,-1)
keys=list(db.keys()); mats=np.array([db[k] for k in keys])
sims=cosine_similarity(emb, mats)[0]; i=int(np.argmax(sims)); return keys[i] if sims[i]>=threshold else None
_BASIC={'a':'a as in apple /æ/','e':'e as in elephant /ɛ/','i':'i as in igloo /ɪ/','o':'o as in octopus /ɒ/','u':'u as in umbrella /ʌ/',
'c':'c as in cat /k/ (before e/i/y often /s/)','g':'g as in goat /g/ (before e/i/y often soft /dʒ/)','y':'y as in yellow /j/ or happy /i/'}
def phonics(word:str)->str:
toks=G2P(word); phones=[t for t in toks if re.match(r"[A-Z]+[0-2]?$", t)]
hints=[];
for ch in word.lower():
if ch in _BASIC and _BASIC[ch] not in hints: hints.append(_BASIC[ch])
return f"Phonemes: {' '.join(phones)} | Hints: {('; '.join(hints)) if hints else '🐝'}"
def lid_chunk(text:str, min_len:int=12)->List[Tuple[str,str]]:
parts=re.split(r"([.!?;\u2026\u2028\u2029])+\s{2,}|", text)
chunks=[]; buf=""
for p in parts:
if not p: continue
buf+=p
if len(buf)>=min_len or re.match(r"[.!?;\u2026\u2028\u2029]", p):
lang,_=langid.classify(buf.strip()); chunks.append((buf.strip(), lang)); buf=""
if buf.strip():
lang,_=langid.classify(buf.strip()); chunks.append((buf.strip(), lang))
return chunks
def asr_transcribe(path:str, uid: Optional[str], forced_lang: Optional[str]=None)->str:
# This function seems to duplicate ASRService.transcribe logic.
# It's better to use the service.
model=get_asr()
prior=_load_json(ADAPT_DB,{}).get(uid or "guest",{}).get("lang_prior")
language=forced_lang or prior or None
segs, info = model.transcribe(path, language=language, beam_size=5, vad_filter=True)
text=" ".join([s.text for s in segs]) if segs else ""
if not forced_lang and text.strip(): # type: ignore
lid,_=langid.classify(text); prof=_load_json(ADAPT_DB,{}); p=prof.get(uid or "guest",{}); p["lang_prior"]=lid; prof[uid or "guest"]=p; _save_json(ADAPT_DB,prof)
return text
def synthesize_multilang(text:str, fallback="en")->str:
# This function is now simplified as the TTSService handles caching and logic.
v = get_tts(fallback)
aud, _ = v.synthesize(text)
sr = v.sample_rate
mix = aud
outp=os.path.join(tempfile.gettempdir(), f"hive_tts_{int(time.time())}.wav")
sf.write(outp, mix if mix is not None else np.zeros(1), sr or 22050, subtype="PCM_16"); return outp
# ----------- compiler / engine -----------
class EngineCurve:
def __init__(self):
self.stats={"runs":0,"ok":0,"latency_ms":[]}
self.router_rules=[]
def choose_route(self, msg:str)->str:
# This is a simplified version. The full logic is now in IntentRouter.
return "tutor"
def run(self, message:str, snippets:List[Dict])->Dict: return {"ok":True,"route":"tutor"}
# ----------- wifi auto-connect (non-blocking) -----------
NET_STATE_DB=os.path.join(CFG["STATE_DIR"],"wifi_known.json")
def _os_name(): return platform.system().lower()
def _fast_probe(host="8.8.8.8", port=53, timeout=1.5) -> bool:
try:
socket.setdefaulttimeout(timeout)
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM); s.connect((host, port)); s.close()
return True
except Exception:
return False
def _http_probe(url="https://huggingface.co", timeout=2.5)->float:
try:
t0=time.time(); r=requests.head(url, timeout=timeout)
if r.status_code<500: return (time.time()-t0)*1000.0
except Exception: pass
return -1.0
def _load_known()->List[dict]:
data=_load_json(NET_STATE_DB, []); out=[]
for d in data:
if isinstance(d,dict) and "ssid" in d:
out.append({"ssid":d["ssid"],"priority":int(d.get("priority",0))})
out.sort(key=lambda x: x.get("priority",0), reverse=True); return out
def _get_saved_password(ssid:str)->Optional[str]:
if keyring:
try: return keyring.get_password("hive_wifi", ssid) or "" # type: ignore
except Exception: return None
return None
def _connect_linux(ssid, password, timeout=12)->Tuple[bool,str]:
try:
cmd=["nmcli","device","wifi","connect",ssid]+(["password",password] if password else [])
p=subprocess.run(cmd, capture_output=True, text=True, timeout=timeout)
return (p.returncode==0), (p.stdout or p.stderr or "").strip()
except Exception as e: return False, f"nmcli error: {e}"
def _connect_windows(ssid, password)->Tuple[bool,str]:
try:
p=subprocess.run(["netsh","wlan","connect","name="+ssid,"ssid="+ssid], capture_output=True, text=True)
if p.returncode==0 and "success" in (p.stdout+p.stderr).lower(): return True,"Connected."
if not password: return False,"No saved password."
xml=f'''<?xml version="1.0"?>
<WLANProfile xmlns="http://www.microsoft.com/networking/WLAN/profile/v1">
<name>{ssid}</name><SSIDConfig><SSID><name>{ssid}</name></SSIDConfig>
<connectionType>ESS</connectionType><connectionMode>auto</connectionMode>
<MSM><security><authEncryption><authentication>WPA2PSK</authentication>
<encryption>AES</encryption><useOneX>false</useOneX></authEncryption>
<sharedKey><keyType>passPhrase</keyType><protected>false</protected>
<keyMaterial>{password}</keyMaterial></sharedKey></security></MSM></WLANProfile>'''
tmp=os.path.join(os.getenv("TEMP","/tmp"), f"wifi_{int(time.time())}.xml"); open(tmp,"w",encoding="utf-8").write(xml)
a=subprocess.run(["netsh","wlan","add","profile","filename="+tmp,"user=all"], capture_output=True, text=True)
if a.returncode!=0: return False, a.stderr or a.stdout or "add profile failed"
c=subprocess.run(["netsh","wlan","connect","name="+ssid,"ssid="+ssid], capture_output=True, text=True)
return (c.returncode==0), (c.stderr or c.stdout or "").strip()
except Exception as e: return False, f"netsh error: {e}"
def _connect_macos(ssid, password)->Tuple[bool,str]:
try:
out=subprocess.check_output(["networksetup","-listallhardwaresports"], stderr=subprocess.DEVNULL).decode("utf-8","ignore")
dev=None
for block in out.split("\n\n"):
if "Wi-Fi" in block or "AirPort" in block:
for l in block.splitlines():
if l.strip().startswith("Device:"): dev=l.split(":",1)[1].strip(); break
if dev: break
if not dev: return False,"Wi-Fi device not found"
cmd=["networksetup","-setairportnetwork",dev, ssid]+([password] if password else [])
p=subprocess.run(cmd, capture_output=True, text=True)
return (p.returncode==0), (p.stderr or p.stdout or "").strip()
except Exception as e: return False, f"networksetup error: {e}"
def _connect_os(ssid,password,timeout=12)->Tuple[bool,str]:
osn=_os_name()
if osn=="linux": return _connect_linux(ssid,password,timeout)
if osn=="windows": return _connect_windows(ssid,password)
if osn=="darwin": return _connect_macos(ssid,password)
return False, f"Unsupported OS: {osn}"
class AutoConnector:
def __init__(self):
self.last_attempt=0.0; self.cooldown_s=30.0; self.per_ssid_timeout=10.0; self.total_budget_s=18.0; self.thread=None; self._lock=threading.Lock()
def online_quick(self)->bool: return _fast_probe(timeout=1.2)
def quality_ms(self)->float: return _http_probe(timeout=2.0)
def _run_once(self):
if self.online_quick(): return
known=_load_known();
if not known: return
t_start=time.time()
for item in known:
if time.time()-t_start>self.total_budget_s: return
ssid=item["ssid"]; pw=_get_saved_password(ssid)
ok,_msg=_connect_os(ssid,pw,timeout=int(self.per_ssid_timeout))
if ok and self.online_quick(): return
def kick_async(self):
with self._lock:
now=time.time()
if now - self.last_attempt < self.cooldown_s: return
self.last_attempt=now
if self.thread and self.thread.is_alive(): return
self.thread = threading.Thread(target=self._run_once, daemon=True); self.thread.start()
NET = AutoConnector()
def _has_gpu_env() -> bool:
"""Global helper to check for GPU environment."""
return EnvDetector()._has_gpu_env()
# ----------- coverage heuristic -----------
def coverage_score_from_snippets(snippets: list, scores: list) -> float:
if not snippets or not scores: return 0.0
s = sorted(scores, reverse=True)[:3]
base = sum(s) / len(s) if s else 0.0 # type: ignore
bonus = min(0.15, 0.03 * len(snippets))
return float(max(0.0, min(1.0, base + bonus)))
# ----------- RBAC / users / lockouts (Restored) -----------
USERS_DB=os.path.join(CFG["STATE_DIR"],"users.json")
LOCKS_DB=os.path.join(CFG["STATE_DIR"],"lockouts.json")
VOICES_DB=os.path.join(CFG["STATE_DIR"],"voices.json")
ADAPT_DB=os.path.join(CFG["STATE_DIR"],"speech_adapt.json")
def _init_users():
d={"owner":{"id":"owner:1","name":CFG["OWNER_NAME"],"role":"owner","pass":CFG["OWNER_PASS"],"second":CFG["OWNER_SECOND"],"prefs":{"activation_names":[CFG["AGENT_NAME"]],"language":"en"}},
"admins_super":[],"admins_general":[],"users":[]}
_save_json(USERS_DB,d); return d
def _load_users():
d=_load_json(USERS_DB, None); return d if d else _init_users()
def _find_user(d, name_or_id):
pools=[("owner",[d.get("owner")]),("admin_super",d.get("admins_super", [])),("admin_general",d.get("admins_general", [])),("user",d.get("users", []))]
for role,pool in pools:
for u in pool or []:
if u and (u.get("id")==name_or_id or u.get("name")==name_or_id): return u, role
return None, None
PERMS={
"owner":{"can_add":["admin_super","admin_general","user"],"can_remove":["admin_super","admin_general","user"],
"can_edit_role_of":["admin_super","admin_general","user"],"can_edit_profile_of":["owner","admin_super","admin_general","user"],
"can_view_scopes":"all","maintenance":"full","code_edit":"approve_and_edit"},
"admin_super":{"can_add":["admin_general","user"],"can_remove":["admin_general","user"],
"can_edit_role_of":["admin_general","user"],"can_edit_profile_of":["admin_general","user"],
"can_view_scopes":"self_only","maintenance":"advanced","code_edit":"suggest_only"},
"admin_general":{"can_add":["user"],"can_remove":["user"],"can_edit_role_of":["user"],"can_edit_profile_of":["user"],
"can_view_scopes":"self_only","maintenance":"basic","code_edit":"suggest_only"},
"user":{"can_add":[],"can_remove":[],"can_edit_role_of":[],"can_edit_profile_of":["user"],
"can_view_scopes":"self_only","maintenance":"none","code_edit":"none"},
"guest":{"can_add":[],"can_remove":[],"can_edit_role_of":[],"can_edit_profile_of":[],
"can_view_scopes":"self_only","maintenance":"none","code_edit":"none"},
}
def attempt_login(name_or_id:str, password:str="", second:Optional[str]=None):
d=_load_users(); locks=_load_json(LOCKS_DB,{ })
def lock_fail(lid, msg):
st=locks.get(lid, {"fails":0,"until":0}); st["fails"]=st.get("fails",0)+1; dur=180 if st["fails"]>=3 else 0; st["until"]=time.time()+dur if dur else 0
locks[lid]=st; _save_json(LOCKS_DB,locks); return False, msg
u,_=_find_user(d, name_or_id)
if not u: return False, "Profile not found."
role=u.get("role","user"); lid=str(u.get("id", u.get("name"))); now=time.time(); st=locks.get(lid, {"fails":0,"until":0})
if now < st.get("until",0): return False, f"Locked; try again in ~{int(st['until']-now)}s."
if role in ("admin_general","admin_super","owner") and (password!=u.get("pass") or (role=="owner" and u.get("second") and second!=u.get("second"))): return lock_fail(lid, "Credentials incorrect.")
locks[lid]={"fails":0,"until":0}; _save_json(LOCKS_DB,locks); return True, f"Welcome, {u.get('name')} ({role})."
# ----------- overlay / hotpatch -----------
RUNTIME_OVERRIDES = os.path.join(HIVE_HOME, "system", "runtime_overrides.json")
ALLOWED_PATCH_KEYS={"prompt_head","retrieval_k","token_budget","temperature","router_rules","web_threshold"}
def _load_overrides():
if os.path.exists(RUNTIME_OVERRIDES):
try: return json.load(open(RUNTIME_OVERRIDES,"r",encoding="utf-8"))
except Exception: return {}
return {}
def _save_overrides(ovr:dict):
_atomic_write_json(RUNTIME_OVERRIDES, ovr)
class RuntimeOverlay:
def __init__(self): self.ovr=_load_overrides()
def apply_to(self, hive: "Hive"):
o=self.ovr or {}
if isinstance(o.get("prompt_head"),str): hive.compiler.override_head=o["prompt_head"]
if isinstance(o.get("token_budget"),int): hive.compiler.override_budget=max(256, min(8192, o["token_budget"]))
hive.retrieval_k=int(o.get("retrieval_k",6)); hive.retrieval_k=max(3,min(24,hive.retrieval_k))
hive.decoding_temperature=float(o.get("temperature",0.7)); hive.decoding_temperature=max(0.0,min(1.5,hive.decoding_temperature))
rr=o.get("router_rules") or []
if isinstance(rr,list):
try: hive.engine.router_rules=[re.compile(pat,re.I) for pat in rr if isinstance(pat,str) and pat]
except re.error: hive.engine.router_rules=[]
t=o.get("web_threshold",None); hive.web_threshold=float(t) if isinstance(t,(int,float)) else 0.40
def patch(self, patch:dict, actor_role:str="hive")->Tuple[bool,str]:
if not CFG["ALLOW_RUNTIME_HOTPATCH"]: return False,"Runtime hotpatch disabled."
if actor_role not in ("hive","admin_general","admin_super","owner"): return False,"Unauthorized actor."
for k in list(patch.keys()):
if k not in ALLOWED_PATCH_KEYS: patch.pop(k,None)
if not patch: return False,"No allowed keys."
self.ovr.update(patch); _save_overrides(self.ovr); return True,"Patched."
# ----------- safe reboot -----------
def _persist_before_reboot():
try: _atomic_write_json(os.path.join(HIVE_HOME, "system", "last_reboot.json"), {"ts":time.time(),"note":"self-reboot"})
except Exception: pass
def safe_reboot(reason:str="optimization"):
if not CFG["ALLOW_SELF_REBOOT"]: return False,"Self-reboot disabled."
_persist_before_reboot()
try:
os.execv(sys.executable, [sys.executable, os.path.abspath(__file__)] + sys.argv[1:])
except Exception:
os._exit(3)
return True, f"Rebooting: {reason}"
# ----------- self optimizer (bounded) -----------
class SelfOptimizer(threading.Thread): # type: ignore
def __init__(self, hive: "Hive"):
super().__init__(daemon=True); self.hive=hive; self.stop=False; self.tick=45.0
self.last_pkg_check = 0
self.last_code_review = 0
self.code_review_interval = 3600 * 24 # Check for self-improvement once a day
self.pkg_check_interval = 3600 * 6 # Check for package updates every 6 hours
def _check_for_package_updates(self):
"""Checks for updates to packages in the allowlist and proposes changes."""
if time.time() - self.last_pkg_check < self.pkg_check_interval:
return
self.last_pkg_check = time.time()
print("[SelfOptimizer] Checking for package updates...")
try:
# Use pip to check for outdated packages
outdated_raw = subprocess.check_output([sys.executable, "-m", "pip", "list", "--outdated"], text=True)
for line in outdated_raw.splitlines()[2:]: # Skip header
parts = line.split()
if len(parts) < 3: continue
pkg_name, current_ver, latest_ver = parts[0], parts[1], parts[2]
# If the outdated package is in our allowlist, propose an update
if pkg_name in CFG["OPT_PKG_ALLOWLIST"]:
print(f"[SelfOptimizer] Found update for {pkg_name}: {current_ver} -> {latest_ver}")
proposal = ChangeProposal(
kind="package",
name=pkg_name,
version=latest_ver,
reason=f"Autonomous proposal to update from {current_ver} to {latest_ver}",
proposer="hive_optimizer"
)
proposal_id = self.hive.changes.propose(proposal)
# Automatically test the new proposal
test_result = self.hive.changes.test_and_compare(proposal_id, proposal)
print(f"[SelfOptimizer] Test result for {pkg_name} update: {test_result.get('passed')}, Delta: {test_result.get('delta')}")
except Exception as e:
print(f"[SelfOptimizer] Error checking for package updates: {e}")
def _propose_self_improvement(self):
"""Asks the LLM to review a part of its own code and proposes a change if valid."""
if time.time() - self.last_code_review < self.code_review_interval:
return
self.last_code_review = time.time()
print("[SelfOptimizer] Performing autonomous code review...")
try:
# Read its own source code
with open(__file__, 'r', encoding='utf-8') as f:
own_code = f.read()
# Select a function to review (e.g., coverage_score_from_snippets)
target_func_name = "coverage_score_from_snippets"
match = re.search(rf"def {target_func_name}\(.*?^$", own_code, re.S | re.M)
if not match:
print(f"[SelfOptimizer] Could not find function {target_func_name} to review.")
return
func_code = match.group(0)
prompt = f"""
Review the following Python function for correctness, efficiency, and adherence to best practices.
If you find an improvement, provide ONLY the complete, new, improved function code. Do not add any explanation.
If no improvement is needed, return the original code exactly as it is.
Original function:
```python
{func_code}
```
"""
# Use the Hive's own chat method to get the LLM's suggestion
suggested_code = self.hive.chat(prompt, "owner", "hive_optimizer")
# If the suggestion is different and seems valid, propose it as a code change
if suggested_code.strip() != func_code.strip() and "def" in suggested_code:
new_source = own_code.replace(func_code, suggested_code)
proposal = ChangeProposal(kind="code", name=__file__, patch_text=new_source, reason=f"Autonomous self-improvement of {target_func_name}", proposer="hive_optimizer")
proposal_id = self.hive.changes.propose(proposal)
print(f"[SelfOptimizer] Proposing self-improvement change {proposal_id}.")
test_result = self.hive.changes.test_and_compare(proposal_id, proposal)
print(f"[SelfOptimizer] Test result for self-improvement: {test_result.get('passed')}, Delta: {test_result.get('delta')}")
except Exception as e:
print(f"[SelfOptimizer] Error during self-improvement proposal: {e}")
def run(self):
while not self.stop:
time.sleep(self.tick)
if not CFG["AUTO_SELF_OPTIMIZE"]: continue
# --- Autonomous Proposal Generation ---
self._check_for_package_updates()
self._propose_self_improvement()
# --- Real-time Overlay Adjustments ---
vm=psutil.virtual_memory(); ovr={}
if vm.percent>88: # type: ignore
ovr["token_budget"]=max(512,int(0.75*(self.hive.compiler.override_budget or CFG["CTX_TOKENS"]))) # type: ignore
ovr["temperature"]=max(0.2,self.hive.decoding_temperature-0.1)
lat=(sum(self.hive.engine.stats["latency_ms"][-10:])/max(1,len(self.hive.engine.stats["latency_ms"][-10:]))) if self.hive.engine.stats["latency_ms"] else 0
if lat>1200: ovr["retrieval_k"]=max(3,self.hive.retrieval_k-1)
if ovr:
ok,_=self.hive.overlay.patch(ovr, actor_role="hive")
if ok: self.hive.overlay.apply_to(self.hive)
if CFG["ALLOW_SELF_REBOOT"] and vm.percent>94:
safe_reboot("refresh memory")
from abc import ABC, abstractmethod # type: ignore
class IModule(ABC): # type: ignore
"""Interface for a Hive module."""
def __init__(self, hive_instance: "Hive"):
self.hive = hive_instance
@abstractmethod
def start(self):
"""Start the module."""
pass
@abstractmethod
def stop(self):
"""Stop the module."""
pass
def get_status(self) -> dict:
return {"status": "unknown"}
class ModuleManager:
"""Manages the lifecycle of Hive modules."""
def __init__(self):
self.modules: "OrderedDict[str, IModule]" = collections.OrderedDict()
def register(self, name: str, module: IModule):
self.modules[name] = module
def start_all(self):
print("[ModuleManager] Starting all modules...")
for name, module in self.modules.items():
print(f"[ModuleManager] Starting {name}...")
module.start()
print("[ModuleManager] All modules started.")
def stop_all(self):
print("[ModuleManager] Stopping all modules...")
for name, module in reversed(self.modules.items()):
module.stop()
print("[ModuleManager] All modules stopped.")
# ----------- internal optimization stack -----------
def _append_jsonl(path, rec):
with open(path, "a", encoding="utf-8") as f:
f.write(json.dumps(rec, ensure_ascii=False) + "\n")
@dataclass
class ChangeProposal: # type: ignore
kind: str # "model" | "package" | "code"
name: str # model id / package name / file target
version: str = "" # type: ignore
patch_text: str = "" # for "code": full replacement or diff
reason: str = "" # type: ignore
created_ts: float = field(default_factory=time.time)
proposer: str = "hive" # type: ignore
id: str = "" # type: ignore
class Sandbox:
def __init__(self):
self.root=os.path.join(OPT_DIR, f"sandbox_{int(time.time())}")
os.makedirs(self.root, exist_ok=True)
self.venv=os.path.join(self.root,"venv")
def _run(self, args, timeout):
p=subprocess.run(args, capture_output=True, text=True, timeout=timeout)
return p.returncode, (p.stdout or "") + (p.stderr or "")
def create(self):
rc,out=self._run([sys.executable,"-m","venv",self.venv], timeout=120)
if rc!=0: raise RuntimeError("venv create failed: "+out)
def pip(self, pkg_spec):
py=os.path.join(self.venv,"bin","python") if os.name!="nt" else os.path.join(self.venv,"Scripts","python.exe")
rc,out=self._run([py,"-m","pip","install","--upgrade",pkg_spec], timeout=CFG["OPT_SANDBOX_TIMEOUT"])
if rc!=0: raise RuntimeError("pip install failed: "+out)
def run_snippet(self, code:str):
py=os.path.join(self.venv,"bin","python") if os.name!="nt" else os.path.join(self.venv,"Scripts","python.exe")
tmp=os.path.join(self.root,"snippet.py"); open(tmp,"w",encoding="utf-8").write(code)
rc,out=self._run([py,tmp], timeout=CFG["OPT_SANDBOX_TIMEOUT"]); return rc,out
def _synthetic_eval(hive_factory, prompts: List[str]) -> Dict:
lat_ms=[]; toks_s=[]; quality=0.0
for p in prompts:
t0=time.time()
h=hive_factory()
out=h.pipe(h.compiler.compile(p, []), max_new_tokens=64, do_sample=False, temperature=0.2) # type: ignore
t1=time.time()
text=out[0]["generated_text"]
lat_ms.append((t1-t0)*1000)
toks=max(1,len(text.split())); toks_s.append(toks/max(0.001,(t1-t0)))
q=sum(1 for w in set(re.findall(r"\w+", p.lower())) if w in text.lower())/max(1,len(set(re.findall(r"\w+", p.lower()))))
quality+=q
n=max(1,len(prompts))
return {"lat_ms":sum(lat_ms)/n, "toks_s":sum(toks_s)/n, "quality":quality/n}
class ChangeManager:
def __init__(self, hive_cls):
self.hive_cls=hive_cls
def _allowed_pkg(self, name):
return any(name.strip().startswith(allow.strip()) for allow in CFG["OPT_PKG_ALLOWLIST"])
def _allowed_model(self, mid):
return mid in CFG["OPT_MODEL_ALLOWLIST"]
def propose(self, cp: ChangeProposal)->str:
cp.id=f"chg_{int(time.time())}_{abs(hash(cp.name))%100000}"; _append_jsonl(OPT_PROPOSALS, cp.__dict__); return cp.id
def test_and_compare(self, cp_id:str, proposal: ChangeProposal)->Dict:
"""
Tests a proposal in a sandbox, compares it against the baseline,
and automatically applies it if it passes and auto-apply is enabled.
"""
def base_hive(): return self.hive_cls(model_id=None, lite=True)
prompts=["Summarize the water cycle.","Translate to French: the quick brown fox jumps over the lazy dog.","Two-sentence difference between TCP and UDP."]
base=_synthetic_eval(base_hive, prompts)
sand=Sandbox(); sand.create()
model_override=None
try:
# Install requirements in sandbox venv
reqs = ["numpy>=1.24.0","psutil>=5.9.0","requests>=2.31.0","gradio>=4.44.0","sentence-transformers>=3.0.0","faiss-cpu>=1.8.0",
"transformers>=4.44.0","accelerate>=0.33.0","datasets>=2.21.0","soundfile>=0.12.1","faster-whisper>=1.0.0","langid>=1.1.6",
"piper-tts>=1.2.0","g2p_en>=2.1.0","librosa>=0.10.1","scikit-learn>=1.1.0","feedparser>=6.0.11","duckduckgo_search>=6.2.10",
"keyring>=24.3.1"]
for req in reqs:
sand.pip(req)
if proposal.kind=="package":
if not self._allowed_pkg(proposal.name): return {"ok":False,"reason":"package not allowlisted"}
spec=proposal.name + (("=="+proposal.version) if proposal.version else "")
sand.pip(spec)
elif proposal.kind=="model":
if not self._allowed_model(proposal.name): return {"ok":False,"reason":"model not allowlisted"}
model_override=proposal.name
elif proposal.kind=="code":
target=os.path.basename(__file__); patched=os.path.join(sand.root,target)
with open(patched,"w",encoding="utf-8") as f: f.write(proposal.patch_text or "")
code=f"import importlib.util, json; p=r'{patched}'; spec=importlib.util.spec_from_file_location('hmod',p); m=importlib.util.module_from_spec(spec); spec.loader.exec_module(m); h=m.Hive(); print(json.dumps({{'ok':True}}))"
rc,out=sand.run_snippet(code)
if rc!=0 or '"ok": true' not in out.lower(): return {"ok":False,"reason":"patch smoke test failed","out":out}
except Exception as e:
return {"ok":False,"reason":f"sandbox setup failed: {e}"}
def cand_hive(): return self.hive_cls(model_id=model_override, lite=True) if model_override else self.hive_cls(model_id=None, lite=True)
cand=_synthetic_eval(cand_hive, prompts)
delta={"lat_ms": base["lat_ms"]-cand["lat_ms"], "toks_s": cand["toks_s"]-base["toks_s"], "quality": cand["quality"]-base["quality"]}
passed=True
if CFG["OPT_THRESH_LATENCY_MS"]>0 and delta["lat_ms"]<CFG["OPT_THRESH_LATENCY_MS"]: passed=False
if CFG["OPT_THRESH_TOKS_PER_S"]>0 and delta["toks_s"]<CFG["OPT_THRESH_TOKS_PER_S"]: passed=False
if delta["quality"]<CFG["OPT_THRESH_QUALITY"]: passed=False
result={"ok":True,"proposal":proposal.__dict__,"base":base,"cand":cand,"delta":delta,"passed":passed, "ts": time.time()}
_append_jsonl(OPT_RESULTS, result)
# Automatically apply if tests passed and auto-apply is on
if passed and CFG.get("OPT_AUTO_APPLY"):
apply_ok, apply_msg = self.apply(result)
result["applied"] = {"ok": apply_ok, "message": apply_msg, "ts": time.time()}
_append_jsonl(OPT_RESULTS, {"update_for": cp_id, "applied": result["applied"]})
return result
def apply(self, result:Dict)->Tuple[bool,str]:
prop=result.get("proposal",{}); kind=prop.get("kind"); name=prop.get("name","")
if not result.get("passed"): return False,"did not meet thresholds"
if kind=="package":
if not self._allowed_pkg(name): return False,"package not allowlisted"
try:
subprocess.check_call([sys.executable,"-m","pip","install","--upgrade", name + (("=="+prop.get("version","")) if prop.get("version") else "")])
return True,"package installed"
except Exception as e: return False,f"pip failed: {e}"
if kind=="model":
if not self._allowed_model(name): return False,"model not allowlisted"
pref=os.path.join(OPT_DIR,"preferred_model.json"); _atomic_write_json(pref, {"model_id":name,"ts":time.time()})
return True,"model preference recorded (takes effect after restart)"
if kind=="code":
is_pi = 'raspberrypi' in platform.machine().lower()
if is_pi and hasattr(self.hive_cls, 'bootstrap_instance') and self.hive_cls.bootstrap_instance:
print("[ChangeManager] Raspberry Pi detected, attempting hot-reload.")
try:
target=os.path.abspath(__file__)
with open(target, "w", encoding="utf-8") as f: f.write(prop.get("patch_text","") or "")
self.hive_cls.bootstrap_instance.soft_restart()
return True, "Code hot-reloaded without a full reboot."
except Exception as e:
return False, f"Hot-reload failed: {e}. A manual restart is required."
try:
target=os.path.abspath(__file__); backup=target+f".bak_{int(time.time())}"; shutil.copyfile(target,backup)
with open(target,"w",encoding="utf-8") as f: f.write(prop.get("patch_text","") or ""); return True,"code updated (backup created); restart recommended"
except Exception as e: return False,f"code write failed: {e}"
return False,"unknown change type"
class ChangeManagerModule(ChangeManager, IModule): # type: ignore
def __init__(self, hive_instance: "Hive"):
IModule.__init__(self, hive_instance)
ChangeManager.__init__(self, hive_instance.__class__)
def start(self): pass
def stop(self): pass
class SelfOptimizerModule(SelfOptimizer, IModule):
def __init__(self, hive_instance: "Hive"):
IModule.__init__(self, hive_instance)
SelfOptimizer.__init__(self, hive_instance)
def start(self):
super().start()
def stop(self): self.stop = True
class LibrarianCurve:
"""Implements the Librarian from Part 2, Section 7."""
def __init__(self, curve_store: CurveStore, k_store: KnowledgeStore):
self.store = curve_store
self.k_store = k_store
def retrieve_scoped_with_scores(self, query: str, role: str, user_id: Optional[str], k: int = 6):
# This is a simplified retrieval. A full implementation would use the role and user_id for scoping.
return self.store.search_with_scores(query, k=k)
class VoiceServicesModule(IModule):
def __init__(self, hive_instance: "Hive"):
super().__init__(hive_instance)
def start(self):
if _HAVE_VAD:
self.hive.vad_service = VADService(aggressiveness=CFG["VOICE_VAD_AGGRESSIVENESS"])
self.hive.asr_service = ASRService()
self.hive.tts_service = TTSService()
self.hive.video_service = VideoService(self.hive)
if self.hive.video_service: self.hive.video_service.start()
def stop(self):
if self.hive.video_service: self.hive.video_service.stop_event.set()
class VideoService(IModule):
"""Handles video capture from a webcam."""
def __init__(self, hive_instance: "Hive"):
super().__init__(hive_instance)
self.cap = None
if _HAVE_CV:
# Initialize the camera capture
self.cap = cv2.VideoCapture(0)
def get_frame(self):
if not self.cap: return None
ret, frame = self.cap.read()
return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) if ret else None
class PersistenceEngine(IModule):
"""Placeholder for a module that would handle data persistence strategies."""
def __init__(self, hive_instance: "Hive"):
super().__init__(hive_instance)
def start(self): pass
def stop(self): pass
# ----------- Hive core -----------
# type: ignore
class PromptCompiler:
def __init__(self):
self.override_head=None
self.override_budget=None
self.personas = {
"default": "You are a helpful assistant. Use the provided facts to answer the user's question concisely.",
"en": "You are an encouraging and patient English tutor. Use the facts to explain the topic clearly and simply.",
"essay_review": "You are a writing critic. Provide a detailed review of the following essay, focusing on structure, clarity, and vocabulary. Use the provided facts for context if needed.",
"pronounce": "You are a pronunciation coach. Explain how to say the word, using the provided phonetic hints.", # type: ignore
}
def compile(self, final_instruction: str, snippets: List[Dict], token_budget: int = 600, intent: str = "default", user_prefs: Optional[Dict] = None, role: str = "guest") -> str:
if self.override_budget: token_budget = self.override_budget
prefs = user_prefs or {}
user_lang = prefs.get("language", "en")
learning_level = prefs.get("learning_level", "intermediate") # e.g., beginner, intermediate, advanced
# Simple ranker: prioritize snippets with more overlapping words.
query_words = set(re.findall(r"\w+", final_instruction.lower()))
def rank_score(snippet): # type: ignore
text = (snippet.get("text", "") or "").lower()
return len(query_words.intersection(re.findall(r"\w+", text)))
ranked = sorted(snippets, key=rank_score, reverse=True)
# Synthesize a concise "insight" from the best snippets instead of just listing them.
# This creates a more natural and integrated prompt for the LLM.
insight = ""
if ranked:
top_snippet_text = (ranked[0].get("text", "") or "").strip()
# Create a very short, focused summary of the most relevant fact.
insight_summary = ' '.join(top_snippet_text.split()[:25]) + ('...' if len(top_snippet_text.split()) > 25 else '')
insight = f"Based on my knowledge, I know that: \"{insight_summary}\". Use this key insight to inform your answer."
# Select persona based on intent and user profile
head = self.override_head or self.personas.get(intent, self.personas.get(user_lang, self.personas["default"]))
# Add personalization based on user profile
if learning_level == "beginner":
head += " Keep your language very simple and be extra encouraging."
if role in ("owner", "admin_super", "admin_general"):
head += f" You are speaking to an administrator ({role}). You may provide more technical details or system status if relevant."
return f"{head} {insight}\n\nUser: {final_instruction}\nAssistant:"
class KnowledgeStoreModule(KnowledgeStore, IModule): # type: ignore
def __init__(self, hive_instance: "Hive"): IModule.__init__(self, hive_instance); KnowledgeStore.__init__(self, hive_instance.config["HIVE_HOME"])
def start(self): pass
def stop(self): pass
class CurveStoreModule(CurveStore, IModule): # type: ignore
def __init__(self, hive_instance: "Hive"):
IModule.__init__(self, hive_instance)
CurveStore.__init__(self, hive_instance.config["CURVE_DIR"])
def start(self): pass
def stop(self): pass
class EngineModule(EngineCurve, IModule):
def __init__(self, hive_instance: "Hive"):
IModule.__init__(self, hive_instance)
EngineCurve.__init__(self)
def start(self): pass
def stop(self): pass
class OverlayModule(RuntimeOverlay, IModule):
def __init__(self, hive_instance: "Hive"):
IModule.__init__(self, hive_instance)
RuntimeOverlay.__init__(self)
def start(self): self.apply_to(self.hive)
def stop(self): pass
class CompilerModule(PromptCompiler, IModule):
def __init__(self, hive_instance: "Hive"): IModule.__init__(self, hive_instance); PromptCompiler.__init__(self); hive_instance.decoding_temperature=0.7
def start(self): pass
def stop(self): pass
class Hive:
def __init__(self, model_id: Optional[str]=None, device: Optional[str]=None, caps: Optional[Dict]=None, lite: bool = False):
self.config = CFG
self.caps = caps or probe_caps()
self.lite_mode = lite
self.module_manager = ModuleManager() # type: ignore
Hive.bootstrap_instance = None # Class attribute to hold bootstrap instance
self.llm_ready = threading.Event()
self.pipe = None
self.tok = None
self.model = None
if not model_id:
model_id, info = pick_model(self.caps)
device = info.get("device", "cpu")
self.model_id = model_id or CFG["MODEL_OVERRIDE"] or CANDIDATES[0][0]
self.device = device or ("cuda" if _has_gpu_env() else "cpu")
if self.lite_mode:
self._init_lite_mode()
else:
self._init_full_mode()
def _init_lite_mode(self): # type: ignore
"""Initializes the Hive in lite mode."""
print("[Hive] Initializing in Lite Mode.")
self._setup_llm_pipeline()
def _init_full_mode(self):
"""Initializes the Hive in full-featured mode."""
print("[Hive] Initializing in Full Mode.")
self.module_manager.register("kstore", KnowledgeStoreModule(self))
self.module_manager.register("store", CurveStoreModule(self))
self.module_manager.register("librarian", LibrarianModule(self))
self.module_manager.register("compiler", CompilerModule(self))
self.module_manager.register("engine", EngineModule(self))
self.module_manager.register("overlay", OverlayModule(self))
self.module_manager.register("changes", ChangeManagerModule(self))
self.module_manager.register("voice_video", VoiceServicesModule(self))
self.module_manager.register("persistence", PersistenceEngine(self))
self.module_manager.register("selfopt", SelfOptimizerModule(self))
self.module_manager.register("dialogue", DialogueManager(self))
self._setup_llm_pipeline()
self.module_manager.start_all()
def _load_local_model(self, trust: bool, **kwargs):
"""Loads the tokenizer and model for local inference."""
print(f"[Hive] Loading local model: {self.model_id} on device: {self.device}")
self.tok = AutoTokenizer.from_pretrained(self.model_id, trust_remote_code=trust, chat_template=None)
if self.tok.pad_token is None:
self.tok.pad_token = self.tok.eos_token
self.model = AutoModelForCausalLM.from_pretrained(self.model_id, trust_remote_code=trust, **kwargs)
self.model.eval()
# Define stop tokens for generation
stop_token_names = ["<|endoftext|>", "<|file_separator|>", "<|user|>", "<|assistant|>", "<|im_start|>", "<|im_end|>", "</s>"] # type: ignore
self.stop_tokens = [tid for tid in self.tok.convert_tokens_to_ids(stop_token_names) if tid is not None]
if self.tok.eos_token_id is not None:
self.stop_tokens.append(self.tok.eos_token_id)
self.stopping_criteria = StoppingCriteriaList([StopOnTokens(self.stop_tokens)])
def _setup_llm_pipeline(self):
"""Sets up the language model, tokenizer, and pipeline."""
trust = True; kwargs = {}
if torch and torch.cuda.is_available() and self.device == "cuda":
kwargs.update(dict(torch_dtype=torch.float16, device_map="auto"))
# --- Automatic Inference Mode Switching ---
# Default to local inference for Pi/local machines, remote for HF Spaces.
# This can be manually overridden by setting HIVE_USE_HF_INFERENCE.
is_hf_space = "SPACE_ID" in os.environ
use_remote_default = is_hf_space
print(f"[Hive] Detected Hugging Face Space: {is_hf_space}. Defaulting to remote inference: {use_remote_default}.")
# Check for manual override from environment variable
if "HIVE_USE_HF_INFERENCE" in os.environ:
use_remote = CFG["HIVE_USE_HF_INFERENCE"]
else:
use_remote = use_remote_default
if use_remote:
print("[Hive] Using remote Hugging Face Inference endpoint.", flush=True)
from huggingface_hub import InferenceClient; endpoint = CFG["HIVE_HF_ENDPOINT"] or None; token = CFG["HF_READ_TOKEN"] or os.getenv("HF_TOKEN") or os.getenv("HUGGING_FACE_HUB_TOKEN") or None
self.client = InferenceClient(model=self.model_id if endpoint is None else None, token=token, timeout=60, base_url=endpoint) # type: ignore
def _remote_pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, **kw):
messages = [{"role": "user", "content": prompt}]
resp = self.client.chat_completion(messages, max_tokens=int(max_new_tokens), temperature=float(temperature), do_sample=bool(do_sample), stream=False)
return [{"generated_text": resp.choices[0].message.content}]
self.pipe = _remote_pipe
# For remote inference, we still need a local tokenizer for prompt compilation
self.tok = AutoTokenizer.from_pretrained(self.model_id, trust_remote_code=trust, chat_template=None) # type: ignore
# We pass `token=False` to prevent from_pretrained from using a potentially invalid # type: ignore
# environment token, as we only need the public tokenizer config.
# The actual inference call uses the token provided to the InferenceClient.
self.tok = AutoTokenizer.from_pretrained(self.model_id, trust_remote_code=trust, chat_template=None, token=False)
self.model = None # No local model needed
self.stopping_criteria = None # Not used with InferenceClient
else:
print("[Hive] Using local LLM for inference.", flush=True)
self.tok = AutoTokenizer.from_pretrained(self.model_id, trust_remote_code=trust, chat_template=None)
if self.tok.pad_token is None:
self.tok.pad_token = self.tok.eos_token
self.model = AutoModelForCausalLM.from_pretrained(self.model_id, trust_remote_code=trust, **kwargs)
self.model.eval()
self.stop_tokens = self.tok.convert_tokens_to_ids(["<|endoftext|>", "<|file_separator|>","<|user|>","<|assistant|>","<|im_start|>","<|im_end|>","</s>"])
self.stop_tokens.append(self.tok.eos_token_id)
self.stopping_criteria = StoppingCriteriaList([StopOnTokens(self.stop_tokens)])
# The pipeline object does not support streaming well with StoppingCriteria. We will call the model directly for streaming.
self.pipe = pipeline("text-generation", model=self.model, tokenizer=self.tok, device=self.device, stopping_criteria=self.stopping_criteria)
self.llm_ready.set()
@property
def store(self) -> 'CurveStore': return self.module_manager.modules["store"] # type: ignore
@property
def librarian(self) -> 'LibrarianCurve': return self.module_manager.modules["librarian"] # type: ignore
@property
def engine(self) -> 'EngineCurve': return self.module_manager.modules["engine"] # type: ignore
@property
def overlay(self) -> 'RuntimeOverlay': return self.module_manager.modules["overlay"] # type: ignore
@property
def changes(self) -> 'ChangeManager': return self.module_manager.modules["changes"] # type: ignore
@property
def compiler(self) -> 'PromptCompiler': return self.module_manager.modules["compiler"] # type: ignore
@property
def selfopt(self) -> 'SelfOptimizer': return self.module_manager.modules["selfopt"] # type: ignore
@property
def persistence(self) -> 'PersistenceEngine': return self.module_manager.modules["persistence"] # type: ignore
@property
def dialogue_manager(self) -> 'DialogueManager': return self.module_manager.modules["dialogue"] # type: ignore
def _prepare_chat_input(self, message: str, user_lang: str, phonics_on: bool, prompt_override: str | None) -> tuple[str, str]: # type: ignore
"""Determines intent and prepares the final message for the LLM."""
intent = self.engine.choose_route(message)
final_message = message
if intent == "pronounce" or (phonics_on and user_lang == 'en'):
match = re.search(r"(pronounce|say|spell|spelling of)\s+['\"]?([a-zA-Z\-']+)['\"]?", message, re.I)
word_to_process = match.group(2) if match else (message.split()[-1] if len(message.split()) < 4 else None)
if word_to_process:
phonics_hint = phonics(word_to_process)
final_message = f"Explain how to pronounce the word '{word_to_process}'. Use this phonics hint in your explanation: {phonics_hint}"
elif prompt_override:
final_message = f"{prompt_override}\n\nHere is the text to work on:\n{message}"
if "review" in prompt_override.lower() or "essay" in prompt_override.lower():
intent = "essay_review"
return final_message, intent
def _get_retrieval_context(self, message: str, effective_role: str, caller_id: str | None, k: int) -> list[dict]: # type: ignore
"""Performs RAG, with web search fallback if necessary."""
if self.lite_mode:
return []
online_now = NET.online_quick()
if not online_now:
NET.kick_async()
snippets, scores = self.librarian.retrieve_scoped_with_scores(message, effective_role, caller_id, k=k)
cov = coverage_score_from_snippets(snippets, scores) # type: ignore
if cov < self.web_threshold and CFG["ONLINE_ENABLE"] and online_now:
self.web_update_and_store(message, max_docs=int(CFG["ONLINE_MAX_RESULTS"] or 5), timeout=int(CFG["ONLINE_TIMEOUT"] or 8))
snippets, _ = self.librarian.retrieve_scoped_with_scores(message, effective_role, caller_id, k=k)
return snippets
def _postprocess_and_log(self, full_output: str, message: str, effective_role: str, caller_id: str | None, intent: str, snippets: list[dict]):
"""Cleans the LLM output and logs the interaction."""
reply = full_output.rsplit("Assistant:", 1)[-1].strip()
if CFG["NO_PROFANITY"]:
reply = re.sub(r"\b(fuck|shit|bitch|asshole|cunt|dick|pussy|nigger|motherfucker)\b", "[censored]", reply, flags=re.I)
if caller_id and not self.lite_mode:
log_path = os.path.join(CFG["HIVE_HOME"], "users", "conversations", f"{caller_id}.jsonl")
log_entry = {"ts": time.time(), "message": message, "effective_role": effective_role, "intent": intent, "snippets_used": [s.get("text", "")[:100] for s in snippets[:3]], "reply": reply}
_append_jsonl(log_path, log_entry)
return reply
def summarize_for_memory(self, text:str, max_new_tokens:int=160)->str:
prompt=("Condense the following content into 4–6 bullet points with names, dates, numbers, and a one-line takeaway. Keep it factual.\n\n"
f"{text[:3000]}\n\nSummary:")
out=self.pipe(prompt, max_new_tokens=max_new_tokens, do_sample=False, temperature=0.01)
return out[0]["generated_text"].split("Summary:",1)[-1].strip()
def add_curve(self, text:str, meta:Dict, scope:str="general"): # type: ignore
if self.lite_mode: return
self.librarian.ingest_text(text, meta, scope)
def online_update(self, query_hint: Optional[str]=None)->Dict:
if self.lite_mode: return {"ok": False, "reason": "Online features are disabled in Lite Mode."}
if not CFG["ONLINE_ENABLE"]: return {"ok":False,"reason":"online disabled"}
if not online_available(int(CFG["ONLINE_TIMEOUT"])): return {"ok":False,"reason":"offline"}
seen=_load_json(ONLINE_DB, {}) # type: ignore
urls=[u.strip() for u in (CFG["ONLINE_SOURCES"] or "").split(",") if u.strip()]
items=fetch_rss(urls, timeout=int(CFG["ONLINE_TIMEOUT"]), limit=30)
added=0
for it in items: # type: ignore
key=hashlib.sha1(((it.get("link") or "")+(it.get("title") or "")).encode("utf-8","ignore")).hexdigest()
if key in seen: continue
base=(it.get("title","")+"\n\n"+it.get("summary","")).strip()
summ=self.summarize_for_memory(base)
self.add_curve(summ, {"dataset":"online_rss","url":it.get("link"),"title":it.get("title"),"published":it.get("published")}, scope="general")
seen[key]=int(time.time()); added+=1 # type: ignore
_save_json(ONLINE_DB, seen); return {"ok":True,"added":added}
def web_update_and_store(self, query:str, max_docs:int, timeout:int)->int:
if self.lite_mode: return 0 # type: ignore
if not (CFG["ONLINE_ENABLE"] and online_available(timeout)): return 0
hits=asyncio.run(web_search_snippets(query, max_results=max_docs, timeout=timeout)); added=0
for h in hits:
body=(h.get("title","")+"\n\n"+(h.get("body","") or "")).strip()
if not body: continue
summ=self.summarize_for_memory(body)
meta={"dataset":"web_update","source":h.get("href",""),"title":h.get("title",""),"ts":time.time()}
self.add_curve(summ, meta, scope="general"); added+=1
return added
def chat_stream(self, prompt: str, max_new_tokens: int, temperature: float):
"""Generator that yields tokens as they are generated."""
if hasattr(self, 'client') and self.client: # Remote Inference
stop_sequences = ["</s>", "Assistant:"] + [self.tok.decode(st) for st in self.stop_tokens]
try:
messages = [{"role": "user", "content": prompt}]
for chunk in self.client.chat_completion(
messages=messages, max_tokens=int(max_new_tokens), temperature=float(temperature),
do_sample=True, stop=stop_sequences, stream=True
):
content = chunk.choices[0].delta.content
if content:
yield content
except Exception as e:
print(f"[ModelBridge] Remote inference stream failed: {e}")
yield "[Error: Could not get response from remote model]"
return
if not (hasattr(self, 'model') and self.model): # Local model not loaded
yield "[Error: Local model is not available]"
return
streamer = TextIteratorStreamer(self.tok, skip_prompt=True, skip_special_tokens=True)
inputs = self.tok([prompt], return_tensors="pt").to(self.device) # type: ignore
generation_kwargs = dict(
inputs,
streamer=streamer, # type: ignore
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
stopping_criteria=self.stopping_criteria
)
thread = threading.Thread(target=self.model.generate, kwargs=generation_kwargs)
thread.start()
for new_text in streamer:
yield new_text
def chat(self, message:str, effective_role:str, caller_id: Optional[str],
k:int=None, max_new_tokens:int=1024, temperature:float=None, prompt_override: Optional[str] = None) -> str: # type: ignore
temp = temperature if temperature is not None else (self.decoding_temperature if not self.lite_mode else 0.7)
# This logic was previously in _prepare_chat_input
user_prefs = self.dialogue_manager.get_user_prefs(caller_id) if hasattr(self, 'dialogue_manager') else {}
final_message, intent = self._prepare_chat_input(message, user_prefs.get("language", "en"), user_prefs.get("phonics_on", False), prompt_override)
if self.lite_mode:
prompt = f"<|user|>\n{message}</s>\n<|assistant|>\n"
full_reply = "".join(list(self.chat_stream(prompt, max_new_tokens=max_new_tokens, temperature=temp)))
return full_reply
kk = k if k is not None else (self.retrieval_k if hasattr(self, 'retrieval_k') else 6)
snippets = self._get_retrieval_context(message, effective_role, caller_id, kk) # type: ignore
prompt = self.compiler.compile( # type: ignore
final_message,
snippets,
token_budget=int(CFG["CTX_TOKENS"]),
intent=intent
)
full_output = "".join(list(self.chat_stream(prompt, max_new_tokens, temp))) # type: ignore
self.engine.run(message, snippets)
return self._postprocess_and_log(full_output, message, effective_role, caller_id, intent, snippets)
# --------------- UI ---------------
HELP=f"""
**Admin/User mode**: Admins (general/super) and Owner log in with password (Owner also needs second factor). After login choose Admin or User mode.
**Owner-only code edits** are enforced via Change Manager policy. Hive can sandbox, test, and propose; code writes require Owner approval (`OPT_AUTO_APPLY=1`) unless Owner applies manually.
**Offline/Online**: Works fully offline from curves. If online and enabled, fetches RSS/web snippets ➡️ summarizes locally ➡️ saves to curves (persists offline).
**Voice**: Faster-Whisper ASR (auto language), Piper TTS mixed-language, phonics hints (English).
**Privacy**: Sensitive/first-person inputs route to user-private library; neutral info to general.
"""
def launch_ui(bootstrap_instance: "Bootstrap"):
with gr.Blocks(title="Hive 🐝") as demo:
with gr.Row():
with gr.Column(scale=3):
gr.Markdown(f"## {CFG['AGENT_NAME']} 🐝")
core_status = gr.Markdown("⏳ **Initializing Full Hive Core...** (Est. 1-5 mins). You can chat with the Lite model now. Advanced features will be enabled shortly.") # type: ignore
chatbot = gr.Chatbot(height=600, type="messages", label="Chat", placeholder="Initializing...")
msg = gr.Textbox(placeholder="Please wait for the model to load...", interactive=False, show_label=False, container=False, scale=4)
with gr.Column(scale=1, min_width=300):
with gr.Sidebar():
uid_state=gr.State(None); role_state=gr.State("guest"); mode_state=gr.State("user"); phonics_state=gr.State(False) # type: ignore
with gr.Accordion("Login & Profile", open=True):
login_name=gr.Textbox(label="Name or ID")
login_pass=gr.Textbox(label="Password (if required)", type="password")
login_second=gr.Textbox(label="Second (owner only)", type="password")
login_btn=gr.Button("Login")
login_status=gr.Markdown(elem_id="login_status") # type: ignore
profile_status = gr.Markdown("Login to see your profile.")
profile_save_btn = gr.Button("Save Profile")
with gr.Accordion("🌐 Language Preference", open=False):
profile_lang = gr.Dropdown(choices=["en","es","fr","de","zh"], label="Preferred Language", value="en")
with gr.Accordion("🗣️ Phonics Assist", open=False):
gr.Markdown("Enable to get phonetic hints for English words when using the 'pronounce' command.")
profile_phonics = gr.Checkbox(label="Enable Phonics Assist (for English)")
with gr.Accordion("🧠 Memory & Vocabulary", open=False):
summary_output = gr.Markdown("Initializing... (Full core required, est. 1-2 min)")
summary_btn = gr.Button("Show Memory Summary", interactive=False)
vocab_output = gr.Markdown("---")
vocab_btn = gr.Button("Get New Word", interactive=False)
progress_output = gr.Markdown("---")
with gr.Accordion("🗣️ Voice & Hands-Free", open=False, visible=True) as voice_accordion:
voice_status_md = gr.Markdown("Initializing voice models... (Est. 15-90 sec)")
with gr.Tabs() as voice_tabs:
with gr.TabItem("Push-to-Talk"):
ptt_audio_in = gr.Audio(sources=["microphone"], type="filepath", label="1. Record your message", interactive=False)
ptt_transcript = gr.Textbox(label="2. Transcript / Your Message", interactive=False)
with gr.Row():
ptt_transcribe_btn = gr.Button("Transcribe Only", interactive=False)
ptt_chat_btn = gr.Button("Send to Chat & Get Voice Reply", variant="primary", interactive=False)
ptt_reply_audio = gr.Audio(type="filepath", label="3. Assistant's Voice Reply", autoplay=True)
with gr.TabItem("Hands-Free"):
vocal_chat_state = gr.State({"active": False, "audio_buffer": b'', "last_interaction_time": 0, "conversation_timeout": 10.0})
vocal_chat_btn = gr.Button("Start Hands-Free Conversation", interactive=False)
vocal_chat_status = gr.Markdown("Status: Inactive")
vocal_mic = gr.Audio(sources=["microphone"], streaming=True, visible=False, autoplay=True)
wake_word_mic = gr.Audio(sources=["microphone"], streaming=True, visible=False, autoplay=False, elem_id="wake_word_mic")
wake_word_state = gr.State({"buffer": b""})
with gr.TabItem("Voice Login"):
gr.Markdown("Enroll your voice to enable password-free login for user accounts.")
enroll_audio = gr.Audio(sources=["microphone"], type="filepath", label="Record 5-10s for voiceprint", interactive=False)
with gr.Row():
enroll_btn = gr.Button("Enroll Voice for Current User", interactive=False)
enroll_status = gr.Markdown()
gr.Markdown("---")
gr.Markdown("After enrolling, you can log in by recording your voice here.")
with gr.Row():
who_btn = gr.Button("Login by Voice", interactive=False)
who_status = gr.Markdown()
with gr.Accordion("📸 Camera", open=False, visible=True) as camera_accordion:
camera_status_md = gr.Markdown("Camera feature disabled or initializing...")
video_out = gr.Image(label="Camera", type="pil", interactive=False)
with gr.Accordion("🌐 Network", open=False, visible=True) as network_accordion:
network_status_md = gr.Markdown("Initializing network features...")
wifi_status=gr.Markdown("Wi-Fi: checking...")
connect_now=gr.Button("Try auto-connect now (non-blocking)")
online_now=gr.Button("Fetch updates now", interactive=False)
online_status=gr.Markdown()
with gr.Accordion("⚙️ Admin Console", open=False, visible=True) as admin_accordion:
admin_info=gr.Markdown("Login as an admin and switch to Admin mode to use these tools.")
mode_picker=gr.Radio(choices=["user","admin"], value="user", label="Mode (admins only)")
with gr.Tabs() as admin_tabs:
with gr.TabItem("User Management"):
target=gr.Textbox(label="Target name or id")
new_name=gr.Textbox(label="New name")
rename_btn=gr.Button("Rename")
new_pass=gr.Textbox(label="New password")
pass_btn=gr.Button("Change password")
new_role=gr.Dropdown(choices=["owner","admin_super","admin_general","user"], value="user", label="New role")
role_btn=gr.Button("Change role", elem_id="role_btn")
out=gr.Markdown()
with gr.TabItem("Add User"):
add_name=gr.Textbox(label="Add: name")
add_role=gr.Dropdown(choices=["admin_super","admin_general","user"], value="user", label="Add role")
add_pass=gr.Textbox(label="Add password (admins only)")
add_btn=gr.Button("Add user/admin")
out_add=gr.Markdown()
with gr.TabItem("System"):
ingest_status = gr.Markdown("Memory Ingestion: Idle")
ingest_now_btn = gr.Button("Start Background Ingestion", interactive=False)
mem_compress_btn=gr.Button("Compress Memory (archive)", interactive=False)
compress_status=gr.Markdown("")
hotpatch_patch=gr.Code(label="Paste hotpatch JSON (advanced)")
hotpatch_status=gr.Markdown("Awaiting patch")
hotpatch_apply=gr.Button("Apply Hotpatch", elem_id="hotpatch_apply", interactive=False)
with gr.TabItem("Optimization"):
gr.Markdown("### Internal Optimization (Change Manager)")
prop_kind=gr.Dropdown(choices=["model","package","code"], value="model", label="Proposal type")
prop_name=gr.Textbox(label="Model ID / Package Name")
prop_ver=gr.Textbox(label="Package version (optional)")
prop_reason=gr.Textbox(label="Why this change?")
prop_patch=gr.Code(label="Code patch (for 'code' proposals): paste full replacement or diff")
propose_btn=gr.Button("Propose", interactive=False)
test_btn=gr.Button("Test in sandbox", interactive=False)
apply_btn=gr.Button("Apply (policy-checked)", elem_id="apply_btn", interactive=False)
opt_out=gr.JSON(label="Result")
# --- Event Handlers ---
def _sanitize_input(text: str) -> str:
"""Removes control characters and leading/trailing whitespace."""
if not text: return ""
return "".join(ch for ch in text if unicodedata.category(ch)[0] != "C").strip()
def talk(m, uid, role, mode, hist, request: gr.Request): # type: ignore
effective_role = role if mode == "admin" else "user"
session_id = request.session_hash
# Use session_id for guests, uid for logged-in users
current_user_id = uid or session_id
sanitized_m = _sanitize_input(m)
if not sanitized_m:
yield hist, gr.Textbox()
return
current_history = (hist or []) + [{"role": "user", "content": sanitized_m}]
yield current_history, gr.Textbox(value="", interactive=False) # Show user message, disable textbox
hive_instance = get_hive_instance(bootstrap_instance) # type: ignore
if hive_instance.lite_mode:
# Lite mode: direct, non-streaming response.
reply = hive_instance.chat(sanitized_m, effective_role, current_user_id)
current_history.append({"role": "assistant", "content": reply or "[No response from model]"})
yield current_history, gr.Textbox(value="", interactive=True)
else:
# Full mode uses the DialogueManager for a streaming response.
if not hasattr(hive_instance, 'dialogue_manager'):
error_msg = "Dialogue Manager not available. Full core may still be initializing."
current_history.append({"role": "assistant", "content": error_msg})
yield current_history, gr.Textbox(value="", interactive=True)
return
current_history.append({"role": "assistant", "content": ""})
try:
# The dialogue manager needs the full history to maintain context. # type: ignore
for chunk in hive_instance.dialogue_manager.process_turn(current_history, current_user_id, effective_role, session_id):
if chunk["type"] == "token":
current_history[-1]["content"] += chunk["content"]
yield current_history, gr.Textbox(value="", interactive=False)
# After the stream is complete, re-enable the textbox.
yield current_history, gr.Textbox(placeholder=f"Talk to {CFG['AGENT_NAME']}", interactive=True)
except Exception as e:
error_msg = f"Error in DialogueManager: {e}" # type: ignore
print(f"[ERROR] {error_msg}")
current_history[-1]["content"] = f"An error occurred: {error_msg}"
yield current_history, gr.Textbox(value="", interactive=True)
msg.submit(talk, [msg, uid_state, role_state, mode_state, chatbot], [chatbot, msg], api_name="chat")
def do_memory_summary(uid, request: gr.Request):
hive_instance = get_hive_instance() # type: ignore
if hive_instance.lite_mode: return "Memory features are disabled in Lite Mode." # type: ignore
current_user_id = uid or request.session_hash # type: ignore
log_path = os.path.join(CFG["HIVE_HOME"], "users", "conversations", f"{current_user_id}.jsonl")
if not os.path.exists(log_path): return "No conversation history found."
try: # type: ignore
with open(log_path, "r", encoding="utf-8") as f:
lines = f.readlines()[-10:]
if not lines: return "Not enough conversation history to summarize." # type: ignore
text_to_summarize = "\n".join([json.loads(line).get("message", "") + "\n" + json.loads(line).get("reply", "") for line in lines])
summary = hive_instance.summarize_for_memory(text_to_summarize) # type: ignore
return summary if summary.strip() else "Could not generate a summary from recent conversations."
except Exception as e: return f"Error generating summary: {e}"
summary_btn.click(do_memory_summary, [uid_state], [summary_output])
def do_get_vocab_word(uid, request: gr.Request):
hive_instance = get_hive_instance() # type: ignore
if hive_instance.lite_mode: return "Vocabulary features are disabled in Lite Mode." # type: ignore
current_user_id = uid or request.session_hash
log_path = os.path.join(CFG["HIVE_HOME"], "users", "conversations", f"{current_user_id}.jsonl")
if not os.path.exists(log_path): return "No conversation history to find words from."
try:
with open(log_path, "r", encoding="utf-8") as f:
content = f.read()
words = [w for w in re.findall(r'\b\w{7,}\b', content.lower()) if w not in ["assistant", "message"]]
if not words: return "No challenging words found yet. Keep chatting!" # type: ignore
word = random.choice(words)
definition = hive_instance.chat(f"What is the definition of the word '{word}'? Provide a simple, clear definition and one example sentence.", "user", current_user_id) # type: ignore
return f"**{word.capitalize()}**: {definition}"
except Exception as e: return f"Error getting vocabulary word: {e}"
def wait_for_memory_features():
"""Waits for the full Hive core and enables memory-related UI features."""
bootstrap_instance.hive_ready.wait() # type: ignore
hive_instance = get_hive_instance() # Ensure the UI's HIVE_INSTANCE is updated to full
return (
"✅ **Full Hive Core is Ready.** Advanced features are now online.",
"Click the button to generate a summary of your recent conversations.",
gr.Textbox(placeholder=f"Talk to {CFG['AGENT_NAME']}", interactive=True),
gr.Button(interactive=True),
"Click to get a new vocabulary word from your conversations.",
gr.Button(interactive=True),
"Your progress will be shown here. Click the button to update.",
# Enable other advanced feature buttons
gr.Button(interactive=True), # online_now
gr.Button(interactive=True), # ingest_now_btn
gr.Button(interactive=True), # mem_compress_btn
gr.Button(interactive=True), # hotpatch_apply
gr.Button(interactive=True), # propose_btn
gr.Button(interactive=True), # test_btn
gr.Button(interactive=True), # apply_btn
)
demo.load(wait_for_memory_features, None, [core_status, summary_output, msg, summary_btn, vocab_output, vocab_btn, progress_output, online_now, ingest_now_btn, mem_compress_btn, hotpatch_apply, propose_btn, test_btn, apply_btn, network_status_md])
def wait_for_lite_core():
"""Waits for the lite Hive core and enables basic chat."""
bootstrap_instance.lite_core_ready.wait() # type: ignore
return gr.Textbox(placeholder=f"Talk to {CFG['AGENT_NAME']} (Lite Mode)", interactive=True)
demo.load(wait_for_lite_core, None, [msg])
vocab_btn.click(do_get_vocab_word, [uid_state], [vocab_output]) # type: ignore
def get_hive_instance():
global HIVE_INSTANCE
# If the full hive is ready, ensure we are using it, and it's a valid instance.
if bootstrap_instance.hive_ready.is_set(): # type: ignore
if bootstrap_instance.hive_instance is not None and (HIVE_INSTANCE is None or HIVE_INSTANCE.lite_mode):
HIVE_INSTANCE = bootstrap_instance.hive_instance
print("[UI] Full Hive instance attached.")
return HIVE_INSTANCE
# type: ignore
# Otherwise, use the lite instance.
if HIVE_INSTANCE is None:
if bootstrap_instance.lite_core_ready.is_set() and bootstrap_instance.hive_lite_instance is not None:
HIVE_INSTANCE = bootstrap_instance.hive_lite_instance
print("[UI] Using Lite Hive instance while full core initializes.")
else:
# Neither lite nor full is ready.
return None
return HIVE_INSTANCE
def wait_for_voice_features(request: gr.Request):
"""Waits for ASR/TTS models and enables voice-related UI elements."""
bootstrap_instance.voice_ready.wait() # type: ignore
bootstrap_instance.hive_ready.wait() # Also wait for full core for voice features # type: ignore
hive_instance = get_hive_instance(bootstrap_instance)
voice_ready = not hive_instance.lite_mode and hasattr(hive_instance, 'asr_service') and hasattr(hive_instance, 'tts_service')
video_ready = not hive_instance.lite_mode and hasattr(hive_instance, 'video_service') and CFG["VIDEO_ENABLED"] # type: ignore
return (
gr.Markdown("✅ Voice models ready.", visible=voice_ready),
gr.Audio(interactive=voice_ready), # ptt_audio_in
gr.Textbox(interactive=voice_ready), # ptt_transcript
gr.Button(interactive=voice_ready), # ptt_transcribe_btn
gr.Button(interactive=voice_ready), # ptt_chat_btn
gr.Button(interactive=voice_ready), # vocal_chat_btn
gr.Audio(interactive=voice_ready), # enroll_audio
gr.Button(interactive=voice_ready), # enroll_btn
gr.Button(interactive=voice_ready), # who_btn
gr.Markdown("✅ Camera ready." if video_ready else "Camera disabled or not found.", visible=True),
gr.Image(interactive=video_ready), # video_out
)
demo.load(wait_for_voice_features, None, [voice_status_md, ptt_audio_in, ptt_transcript, ptt_transcribe_btn, ptt_chat_btn, vocal_chat_btn, enroll_audio, enroll_btn, who_btn, camera_status_md, video_out], show_progress="hidden")
def stream_video():
"""Streams video frames from the VideoService to the UI."""
hive_instance = get_hive_instance(bootstrap_instance) # type: ignore
if not (
hive_instance and not hive_instance.lite_mode and
hasattr(hive_instance, 'video_service') and hive_instance.video_service and
CFG["VIDEO_ENABLED"]
):
yield None
return
video_service = hive_instance.video_service
while not video_service.stop_event.is_set():
frame = video_service.get_frame()
if frame is not None:
yield cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
time.sleep(0.05) # ~20 fps
demo.load(stream_video, None, video_out)
def do_online_update():
hive_instance = get_hive_instance(bootstrap_instance) # type: ignore
if hive_instance.lite_mode: return "Online features are disabled in Lite Mode." # type: ignore
return "Added %s new summaries to curves." % (hive_instance.online_update().get("added",0))
connect_now.click(lambda: (NET.kick_async() or "Auto-connect started in background."), [], [wifi_status]) # type: ignore
online_now.click(do_online_update, [], [online_status])
def on_login_or_mode_change(role, pick): # type: ignore
is_adm = is_admin(pick, role)
return gr.Tab(visible=is_adm)
# This function is now the core of the hands-free mode, using the new VADService.
def process_vocal_chat_stream(stream, state, uid, role, mode, chatbot_history, request: gr.Request): # type: ignore
now = time.time() # type: ignore
hive_instance = get_hive_instance() # type: ignore
if hive_instance.lite_mode or not hasattr(hive_instance, 'vad_service') or not hive_instance.vad_service: # type: ignore
return None, state, chatbot_history, "VAD service not ready."
if stream is None:
if state["active"] and now - state.get("last_interaction_time", now) > state["conversation_timeout"]:
state["active"] = False
return None, state, chatbot_history, "Status: Sleeping. Say wake word to start."
return None, state, chatbot_history, state.get("status_text", "Status: Inactive")
if not state["active"]:
return None, state, chatbot_history, "Status: Sleeping. Say wake word to start."
sampling_rate, audio_chunk = stream
# Use the VAD service to get speech segments
for speech_segment in hive_instance.vad_service.process_stream(audio_chunk): # type: ignore
state["last_interaction_time"] = now
yield None, state, chatbot_history, "Status: Transcribing..."
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmpfile:
sf.write(tmpfile.name, speech_segment, sampling_rate)
asr_result = hive_instance.asr_service.transcribe(tmpfile.name, uid) # type: ignore
os.remove(tmpfile.name)
user_text = asr_result["text"]
if not user_text:
continue
chatbot_history = (chatbot_history or []) + [[user_text, "..."]]
yield None, state, chatbot_history, "Status: Thinking..."
eff_role = role if mode == "admin" else "user"
final_message, intent = hive_instance._prepare_chat_input(user_text, "en", False, None) # type: ignore
max_tokens = 1024 if intent == "essay_review" else 1024 # Increased for longer responses
full_prompt = hive_instance.compiler.compile(final_message, [], intent=intent) # type: ignore
full_reply = ""
sentence_buffer = ""
for token in hive_instance.chat_stream(full_prompt, max_new_tokens=max_tokens, temperature=0.7): # type: ignore
full_reply += token
sentence_buffer += token
chatbot_history[-1][1] = full_reply.strip()
match = re.search(r'([^.!?]+[.!?])', sentence_buffer)
if match:
sentence_to_speak = match.group(0).strip()
sentence_buffer = sentence_buffer[len(sentence_to_speak):].lstrip()
reply_audio_path = hive_instance.tts_service.synthesize(sentence_to_speak, uid) # type: ignore
yield gr.Audio(value=reply_audio_path, autoplay=True), state, chatbot_history, "Status: Speaking..."
if sentence_buffer.strip():
reply_audio_path = hive_instance.tts_service.synthesize(sentence_buffer, uid) # type: ignore
yield gr.Audio(value=reply_audio_path, autoplay=True), state, chatbot_history, "Status: Speaking..."
state["last_interaction_time"] = time.time()
yield None, state, chatbot_history, "Status: Active, listening for follow-up..."
def toggle_vocal_chat(state):
state["active"] = not state["active"]
status_text = "Status: Active, listening..." if state["active"] else "Status: Inactive"
btn_text = "Stop Hands-Free Conversation" if state["active"] else "Start Hands-Free Conversation"
# Toggle visibility of the streaming mic
mic_visibility = state["active"]
return state, status_text, gr.Button(value=btn_text), gr.Audio(visible=mic_visibility, streaming=True)
vocal_chat_btn.click(toggle_vocal_chat, [vocal_chat_state], [vocal_chat_state, vocal_chat_status, vocal_chat_btn, vocal_mic])
# --- Wake Word Detection Logic ---
porcupine_instance = None
if _HAVE_PVP and CFG.get("PVPORCUPINE_ACCESS_KEY"): # type: ignore
keyword_paths: List[str] = []
keywords = [k.strip() for k in CFG["HIVE_WAKE_WORDS"].split(',') if k.strip()] # type: ignore
for keyword in keywords:
custom_path = os.path.join(CFG["HIVE_HOME"], "keywords", f"{keyword}_{_os_name()}.ppn")
if os.path.exists(custom_path):
keyword_paths.append(custom_path)
elif keyword in pvporcupine.BUILTIN_KEYWORDS: # type: ignore
keyword_paths.append(keyword)
if not keyword_paths: keyword_paths = ['bumblebee']
try:
porcupine_instance = pvporcupine.create( # type: ignore
access_key=CFG["PVPORCUPINE_ACCESS_KEY"], # type: ignore
keyword_paths=keyword_paths
)
print(f"[WakeWord] Listening for: {keywords}")
except Exception as e:
print(f"[WakeWord] Error initializing Porcupine: {e}. Wake word will be disabled.")
porcupine_instance = None
# Auto-start wake word listener on Pi
is_pi = 'raspberrypi' in platform.machine().lower()
if is_pi and porcupine_instance:
print("[WakeWord] Raspberry Pi detected. Wake word listener is always on.")
def process_wake_word_stream(stream, ww_state, vc_state, request: gr.Request): # type: ignore
if not porcupine_instance or stream is None or vc_state.get("active", False):
return ww_state, vc_state, "Status: Inactive", gr.Button(value="Start Hands-Free Conversation")
sampling_rate, audio_chunk = stream
# Porcupine expects 16-bit integers
audio_int16 = (audio_chunk * 32767).astype(np.int16)
ww_state["buffer"] += audio_int16.tobytes()
frame_length = porcupine_instance.frame_length # type: ignore
while len(ww_state["buffer"]) >= frame_length * 2: # 2 bytes per int16
frame_bytes = ww_state["buffer"][:frame_length * 2]
ww_state["buffer"] = ww_state["buffer"][frame_length * 2:]
frame = struct.unpack_from("h" * frame_length, frame_bytes)
keyword_index = porcupine_instance.process(frame) # type: ignore
if keyword_index >= 0:
print(f"[WakeWord] Detected wake word! Activating hot mic.")
vc_state["active"] = True
vc_state["last_interaction_time"] = time.time() # Start conversation timer
status_text = "Status: Wake word detected! Listening for command..."
return ww_state, vc_state, status_text, gr.Button(value="Stop Vocal Chat")
return ww_state, vc_state, "Status: Inactive", gr.Button(value="Start Hands-Free Conversation")
if porcupine_instance:
wake_word_mic.stream(process_wake_word_stream, [wake_word_mic, wake_word_state, vocal_chat_state], [wake_word_state, vocal_chat_state, vocal_chat_status, vocal_chat_btn])
def is_admin(mode, role): return (mode == "admin") and (role in ("admin_general", "admin_super", "owner"))
def do_add(mode, role, caller, nm, rl, pw): # type: ignore
if not is_admin(mode, role): return "Switch to Admin mode to use this."
d=_load_users(); cu,_=_find_user(d, caller or "")
if not cu: return "Login first as admin."
if rl not in PERMS.get(cu["role"],{}).get("can_add",[]): return f"{cu['role']} cannot add {rl}."
uid=f"{rl}:{int(time.time())}"
entry={"id":uid,"name":nm,"role":rl,"pass":pw if rl!='user' else "", "prefs":{"activation_names":[CFG["AGENT_NAME"]],"language":"en"}} # type: ignore
if rl=="owner":
for group in ["admins_super", "admins_general", "users"]:
d[group] = [u for u in d.get(group, []) if u.get("id") != d.get("owner", {}).get("id")]
d["owner"] = entry
elif rl=="admin_super": d["admins_super"].append(entry)
elif rl=="admin_general": d["admins_general"].append(entry)
else: d["users"].append(entry)
_save_json(USERS_DB,d); return f"Added {rl}: {nm}"
add_btn.click(do_add, [mode_state, role_state, uid_state, add_name, add_role, add_pass], [out_add])
def do_rename(mode, role, caller, tgt, nm): # type: ignore
if not is_admin(mode, role): return "Switch to Admin mode to use this."
d=_load_users(); u,_=_find_user(d, tgt or "")
if not u: return "Target not found."
cu,_=_find_user(d, caller or "")
if not cu: return "Login first."
if u.get("role") in PERMS.get(cu.get("role"),{}).get("can_edit_profile_of",[]):
u["name"]=nm; _save_json(USERS_DB,d); return "Renamed."
return "Not allowed."
rename_btn.click(do_rename,[mode_state, role_state, uid_state, target, new_name],[out])
def do_pass(mode, role, caller, tgt, pw): # type: ignore
if not is_admin(mode, role): return "Switch to Admin mode to use this."
d=_load_users(); u,_=_find_user(d, tgt or "")
if not u: return "Target not found."
cu,_=_find_user(d, caller or "")
if not cu: return "Login first."
if u.get("role") in PERMS.get(cu.get("role"),{}).get("can_edit_profile_of",[]):
u["pass"]=pw; _save_json(USERS_DB,d); return "Password changed."
return "Not allowed."
pass_btn.click(do_pass,[mode_state, role_state, uid_state, target, new_pass],[out])
def do_role(mode, role, caller, tgt, rl): # type: ignore
if not is_admin(mode, role): return "Switch to Admin mode to use this."
d=_load_users(); u,_=_find_user(d, tgt or "")
if not u: return "Target not found."
cu,_=_find_user(d, caller or "");
if not cu: return "Login first."
allowed_new = {"owner":["owner","admin_super","admin_general","user"],
"admin_super":["admin_super","admin_general","user"],
"admin_general":["admin_general","user"]}.get(cu.get("role"), [])
if u.get("role") not in PERMS.get(cu.get("role"),{}).get("can_edit_role_of",[]) or rl not in allowed_new:
return f"Not allowed to set {rl}."
for grp in ["admins_super","admins_general","users"]:
if grp in d:
d[grp] = [user for user in d[grp] if user.get("id") != u.get("id")]
if rl=="owner": d["owner"]=u; u["role"]="owner"
elif rl=="admin_super": d["admins_super"].append(u); u["role"]="admin_super"
elif rl=="admin_general": d["admins_general"].append(u); u["role"]="admin_general"
else: d["users"].append(u); u["role"]="user"
_save_json(USERS_DB,d); return f"Role set to {rl}."
role_btn.click(do_role,[mode_state, role_state, uid_state, target, new_role],[out])
def run_ingest_background(hive_instance): # type: ignore
"""
Triggers the background ingestion process.
"""
if hive_instance.lite_mode: return "Ingestion is disabled in Lite Mode."
def ingest_task(): # type: ignore
staged_ingest_chain_if_enabled(str(hive_instance.config["CURVE_DIR"]))
threading.Thread(target=ingest_task, daemon=True).start()
return "Background ingestion process started. See logs for details."
ingest_now_btn.click(lambda: run_ingest_background(get_hive_instance()), [], [ingest_status])
# This function has a potential issue if get_hive_instance() returns a lite instance.
# It is now guarded with a check.
def compress_memory(h): # type: ignore
if h.lite_mode or not hasattr(h, 'store'):
return "Memory compression is not available until the Full Hive Core is ready."
ok,msg= _archive_memory(str(h.store.dir))
return msg
mem_compress_btn.click(lambda: compress_memory(get_hive_instance()), [], [compress_status])
def do_hotpatch(mode, role, patch_json): # type: ignore
"""
Applies a runtime hotpatch from the admin console.
"""
if not is_admin(mode, role):
return "Hotpatching is an admin-only feature."
try: patch=json.loads(patch_json)
except Exception as e: return f"Invalid JSON: {e}"
hive_instance = get_hive_instance()
if hive_instance.lite_mode or not hasattr(hive_instance, 'overlay'):
return "Hotpatching is not available in Lite Mode."
ok, msg = hive_instance.overlay.patch(patch, actor_role=role)
return msg
hotpatch_apply.click(do_hotpatch,[mode_state, role_state, hotpatch_patch],[hotpatch_status])
# This state will hold the session hash for guest users.
session_id_state = gr.State(None)
_last: Dict[str, any] = {"id": None, "obj": None}
# This function is safe because it's only called by the user on the full UI.
# It is now guarded with a check.
def do_apply(role, mode): # type: ignore
hive_instance = get_hive_instance() # type: ignore
if hive_instance.lite_mode or not hasattr(hive_instance, 'changes'): return "Change management is disabled in Lite Mode."
if role not in ("admin_super","owner") or mode!="admin": return "Only admin_super or owner may apply."
if not _last["obj"]: return "No proposal loaded." # type: ignore
res=hive_instance.changes.test_and_compare(str(_last["id"]), _last["obj"]) # type: ignore
if not res.get("ok"): return f"Test failed: {res.get('reason','unknown')}"
if _last["obj"].kind=="code" and role!="owner" and not CFG["OPT_AUTO_APPLY"]: return "Awaiting Owner approval for code changes." # type: ignore
ok,msg=hive_instance.changes.apply(res); return msg if ok else f"Apply failed: {msg}" # type: ignore
def do_propose(kind,name,ver,reason,patch): # type: ignore
hive_instance = get_hive_instance() # type: ignore
if hive_instance.lite_mode or not hasattr(hive_instance, 'changes'): return {"status": "Error", "reason": "Proposals disabled in Lite Mode."}
cp=ChangeProposal(kind=kind,name=name or "",version=ver or "",reason=reason or "",patch_text=patch or "")
pid=hive_instance.changes.propose(cp); _last["id"]=pid; _last["obj"]=cp # type: ignore
return {"status": "Proposed", "kind": kind, "name": name or '(code patch)', "id": pid} # type: ignore
def do_test(): # type: ignore
if not _last["obj"]: return "No proposal in memory. Submit one first." # type: ignore
if get_hive_instance().lite_mode or not hasattr(get_hive_instance(), 'changes'): return {"status": "Error", "reason": "Testing disabled in Lite Mode."}
res=get_hive_instance().changes.test_and_compare(str(_last["id"]), _last["obj"]); return res # type: ignore
propose_btn.click(do_propose, [prop_kind,prop_name,prop_ver,prop_reason,prop_patch],[opt_out]) # type: ignore
test_btn.click(lambda: do_test(), [], [opt_out])
apply_btn.click(do_apply, [role_state, mode_state], [opt_out])
demo.launch(
server_name="0.0.0.0",
server_port=int(os.environ.get("PORT")) if os.environ.get("PORT") else None,
share=os.getenv("GRADIO_SHARE", "false").lower() == "true"
); return demo
def get_hive_instance(bootstrap_instance: "Bootstrap", lite: Optional[bool] = None, caps: Optional[Dict] = None):
"""
Global function to safely get the current Hive instance.
It prioritizes the full instance if ready, otherwise falls back to the lite one.
"""
global HIVE_INSTANCE
if bootstrap_instance.hive_ready.is_set() and bootstrap_instance.hive_instance:
if HIVE_INSTANCE is None or HIVE_INSTANCE.lite_mode:
HIVE_INSTANCE = bootstrap_instance.hive_instance
print("[get_hive_instance] Switched to Full Hive Instance.")
elif HIVE_INSTANCE is None and bootstrap_instance.lite_core_ready.is_set() and bootstrap_instance.hive_lite_instance:
HIVE_INSTANCE = bootstrap_instance.hive_lite_instance
print("[get_hive_instance] Using Lite Hive instance.")
if HIVE_INSTANCE is None:
print("[ERROR] get_hive_instance: No Hive instance is available.")
return HIVE_INSTANCE
class Bootstrap:
"""Handles the entire application startup sequence cleanly."""
def __init__(self, config: Dict):
self.config = config
self.caps: Optional[Dict] = None
self.env_detector = EnvDetector()
self.hive_instance: Optional[Hive] = None
self.hive_lite_instance: Optional[Hive] = None
self.hive_ready = threading.Event()
self.lite_core_ready = threading.Event()
self.voice_ready = threading.Event()
self.lite_core_success = True
self.lite_core_error_msg = ""
Hive.bootstrap_instance = self
self.env: Optional[Dict] = None
self.app: Optional[gr.Blocks] = None # type: ignore
self.init_status: Dict[str, str] = {}
self.ui_thread: Optional[threading.Thread] = None
def initialize_persistent_storage(self, base_path: str):
"""Creates the canonical directory structure as per spec."""
logging.info(f"Ensuring storage layout at {base_path}...")
root = _Path(base_path)
for d in DIRS_TO_CREATE: (root / d).mkdir(parents=True, exist_ok=True)
"""Creates the canonical directory structure as per spec.""" # type: ignore
logging.info(f"Ensuring storage layout at {base_path}...")
root = _Path(base_path)
for d in DIRS_TO_CREATE: (root / d).mkdir(parents=True, exist_ok=True)
# Create default config if not exists
if not (root / "system" / "config.json").exists():
_save_json(root / "system" / "config.json", {"note": "Default config created by Bootstrap."})
def _run_task(self, name: str, target_func, *args):
"""Wrapper to run an initialization task, logging its status."""
print(f"[Bootstrap] Starting task: {name}...")
start_time = time.time()
self.init_status[name] = "running"
try:
target_func(*args)
duration = time.time() - start_time
self.init_status[name] = "success"
print(f"[Bootstrap] Task '{name}' completed successfully in {duration:.2f}s.")
except Exception as e:
duration = time.time() - start_time
self.init_status[name] = f"failed: {e}"
print(f"[ERROR] Task '{name}' failed after {duration:.2f}s: {e}")
def run(self):
"""Executes the full startup sequence."""
print("[Bootstrap] Starting Hive System...")
self.caps = self.env_detector.probe()
print(f"[Bootstrap] System capabilities: {self.caps}")
self.initialize_persistent_storage(self.config["HIVE_HOME"])
# Enforce resource limits based on environment
if self.caps.get("is_low_memory"):
print("[Bootstrap] Low memory detected, enabling ultra-constrained mode.")
self.config["CTX_TOKENS"] = min(self.config.get("CTX_TOKENS", 2048), 1024)
self._run_task("lite_core_init", self._init_lite_core)
# Launch the UI in a background thread so it's not blocking
self.ui_thread = threading.Thread(target=self.launch, daemon=True)
self.ui_thread.start()
# Start full initialization in another background thread
full_init_thread = threading.Thread(target=self.full_initialization_thread, daemon=True)
full_init_thread.start()
# Keep the main thread alive to handle signals and wait for shutdown
import signal
signal.signal(signal.SIGINT, self.graceful_shutdown)
signal.signal(signal.SIGTERM, self.graceful_shutdown)
logging.info("Main thread waiting for termination signal.")
full_init_thread.join() # Optionally wait for init to complete
self.ui_thread.join() # Or wait for UI thread to finish
def full_initialization_thread(self):
"""Handles all non-blocking, full-feature initializations."""
print("[Bootstrap] Starting full initialization in background...")
# Start loading heavy models in parallel
asr_thread = threading.Thread(target=self._run_task, args=("asr_model_load", get_asr))
tts_thread = threading.Thread(target=self._run_task, args=("tts_model_load", lambda: get_tts(CFG["TTS_LANG"])))
asr_thread.start()
tts_thread.start()
# --- Other Background Tasks ---
self._run_task("memory_setup", self.setup_memory)
# Wait for voice models
asr_thread.join()
tts_thread.join()
self.voice_ready.set()
logging.info("Voice services ready.")
# Now, initialize the full Hive instance, which includes the main LLM
self._run_task("full_core_init", self._init_full_core)
self.hive_ready.set()
logging.info("Full Hive Core is ready.")
def _init_lite_core(self):
"""Initializes the fast, responsive lite core."""
print("[Bootstrap] Initializing Lite Hive Core...")
try:
# This now correctly creates the initial lite instance via the global function
self.hive_lite_instance = Hive(caps=self.caps, lite=True) # type: ignore
self.lite_core_success = True
self.lite_core_error_msg = ""
self.lite_core_ready.set()
print("[Bootstrap] Lite Hive Core initialized successfully.")
except Exception as e:
self.lite_core_success = False
self.lite_core_error_msg = f"Failed to initialize Lite Hive Core: {e}"
print(f"[ERROR] {self.lite_core_error_msg}")
import traceback
traceback.print_exc()
# In case of failure, we still set the event to not hang the UI.
self.lite_core_ready.set()
def _init_full_core(self):
"""Initializes all features of the full Hive core."""
logging.info("Initializing Full Hive Core...") # Added logging
# This is now correctly calling the global get_hive_instance
llm_thread = threading.Thread(target=lambda: get_hive_instance(lite=False, caps=self.caps), daemon=True)
asr_thread = threading.Thread(target=get_asr, daemon=True)
tts_thread = threading.Thread(target=lambda: get_tts(CFG["TTS_LANG"]), daemon=True)
llm_thread.start()
asr_thread.start()
tts_thread.start()
# --- Other Background Tasks ---
self._run_task("memory_setup", self.setup_memory)
# Wait for voice models
asr_thread.join()
tts_thread.join()
self.voice_ready.set()
logging.info("Voice services ready.")
# Wait for the main LLM and finalize full core
llm_thread.join()
self.hive_instance = get_hive_instance(lite=False) # Ensure full instance is assigned
self.hive_ready.set() # Set *after* self.hive_instance is correctly assigned
logging.info("Full Hive Core is ready.")
def soft_restart(self):
"""Performs a hot-reload of the application logic without restarting the process."""
logging.info("Performing soft restart (hot-reload)...")
self.hive_ready.clear()
self.lite_core_ready.clear()
self.voice_ready.clear()
if self.hive_instance:
self.hive_instance.module_manager.stop_all()
if self.app and hasattr(self.app, 'close'): # type: ignore
self.app.close()
self.ui_thread.join(timeout=5.0)
import app
importlib.reload(app)
logging.info("Re-initializing after hot-reload...")
self.run()
def setup_memory(self):
"""Handles memory restoration and staged ingestion."""
def _memory_task():
print("[Bootstrap] Starting background memory setup...")
try:
ok_restored, restore_msg = restore_curves_if_missing(str(self.config["CURVE_DIR"])) # type: ignore
with open(os.path.join(self.config["STATE_DIR"], "restore_status.log"), "a", encoding="utf-8") as f:
f.write(json.dumps({"ok":bool(ok_restored),"msg":restore_msg,"ts":time.time()})+"\n")
if ok_restored:
logging.info(f"Memory restore status: {restore_msg}")
else:
logging.info("No memory restored, proceeding to staged ingestion in background...")
staged_ingest_chain_if_enabled(str(self.config["CURVE_DIR"])) # type: ignore
except Exception as e:
with open(os.path.join(self.config["STATE_DIR"], "restore_error.log"), "a", encoding="utf-8") as f:
f.write(f"restore/ingest: {e}\n") # type: ignore
threading.Thread(target=_memory_task, daemon=True).start()
def launch(self):
"""Launches the appropriate interface (UI or CLI)."""
if self.config["LAUNCH_UI"]:
logging.info("Launching Web UI...")
self.app = launch_ui(self)
# Add the /health endpoint to the FastAPI app
if self.app and hasattr(self.app, 'app'):
@self.app.app.get("/health")
def health_check():
status_report = {}
now = time.time()
for name, data in self.init_status.items():
if data.get("status") == "running":
elapsed = now - data.get("start_time", now)
remaining = max(0, data.get("estimated_duration", 0) - elapsed)
status_report[name] = f"running for {elapsed:.1f}s, est. remaining: {remaining:.1f}s"
else:
status_report[name] = data.get("status")
return status_report
else: # type: ignore
logging.info("Launching CLI...")
self.run_cli_loop()
def run_cli_loop(self): # type: ignore
"""Runs a command-line interface loop for Hive."""
self.lite_core_ready.wait()
print("Hive Lite is ready. Type a message and press Enter (Ctrl+C to exit).")
print("Full core is initializing in the background...")
try:
self.hive_instance = self.hive_lite_instance
while True:
s = input("> ").strip()
if not s: continue
reply = self.hive_instance.chat(s, effective_role="user", caller_id="cli") # type: ignore
print(reply)
except (KeyboardInterrupt, EOFError):
print("\nExiting Hive CLI.")
pass
def graceful_shutdown(self, signum=None, frame=None):
"""Handles SIGINT/SIGTERM for clean shutdown."""
logging.info("\nGraceful shutdown requested...")
if self.hive_instance and hasattr(self.hive_instance, 'module_manager'):
logging.info("Stopping all modules...")
self.hive_instance.module_manager.stop_all() # type: ignore
if hasattr(self.hive_instance, 'embedding_worker'):
self.hive_instance.embedding_worker.stop_event.set() # type: ignore
if self.video_service:
self.video_service.stop_event.set()
gr.close_all()
logging.info("Exiting.")
sys.exit(0)
if __name__ == "__main__":
CFG["LAUNCH_UI"] = True
os.environ["HIVE_USE_HF_INFERENCE"] = "1"
bootstrap = Bootstrap(CFG)
bootstrap.run() |