Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 4 |
+
from langchain_community.document_loaders import PyPDFLoader, WebBaseLoader
|
| 5 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 6 |
+
from langchain_community.vectorstores import SKLearnVectorStore
|
| 7 |
+
from langchain_openai import ChatOpenAI
|
| 8 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
| 9 |
+
from langchain_pinecone import PineconeVectorStore
|
| 10 |
+
from langchain.prompts import PromptTemplate
|
| 11 |
+
from langchain_core.output_parsers import StrOutputParser
|
| 12 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 13 |
+
from pydantic import BaseModel, Field
|
| 14 |
+
from typing import List, TypedDict, Optional
|
| 15 |
+
from langchain.schema import Document
|
| 16 |
+
from langgraph.graph import START, END, StateGraph
|
| 17 |
+
from dotenv import load_dotenv
|
| 18 |
+
|
| 19 |
+
load_dotenv()
|
| 20 |
+
|
| 21 |
+
url = [
|
| 22 |
+
"https://www.investopedia.com/",
|
| 23 |
+
"https://www.fool.com/",
|
| 24 |
+
"https://www.morningstar.com/",
|
| 25 |
+
"https://www.kiplinger.com/",
|
| 26 |
+
"https://www.nerdwallet.com/"
|
| 27 |
+
]
|
| 28 |
+
|
| 29 |
+
# Initialize Embedding and Vector DB
|
| 30 |
+
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 31 |
+
|
| 32 |
+
# Initialize Pinecone connection
|
| 33 |
+
try:
|
| 34 |
+
pc = PineconeVectorStore(
|
| 35 |
+
pinecone_api_key=os.environ.get('PINECONE_KEY'),
|
| 36 |
+
embedding=embedding_model,
|
| 37 |
+
index_name='rag-rubic',
|
| 38 |
+
namespace='vectors_lightmodel'
|
| 39 |
+
)
|
| 40 |
+
retriever = pc.as_retriever(search_kwargs={"k": 10})
|
| 41 |
+
except Exception as e:
|
| 42 |
+
print(f"Pinecone connection error: {e}")
|
| 43 |
+
# Fallback to SKLearn vector store if Pinecone fails
|
| 44 |
+
retriever = None
|
| 45 |
+
|
| 46 |
+
# Initialize the LLM
|
| 47 |
+
llm = ChatOpenAI(
|
| 48 |
+
model='gpt-4o-mini',
|
| 49 |
+
api_key=os.environ.get('OPENAI_KEY'),
|
| 50 |
+
temperature=0.2
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
# Schema for grading documents
|
| 54 |
+
class GradeDocuments(BaseModel):
|
| 55 |
+
binary_score: str = Field(description="Documents are relevant to the question, 'yes' or 'no'")
|
| 56 |
+
|
| 57 |
+
structured_llm_grader = llm.with_structured_output(GradeDocuments)
|
| 58 |
+
|
| 59 |
+
# Define System and Grading prompt
|
| 60 |
+
system = """You are a grader assessing relevance of a retrieved document to a user question.
|
| 61 |
+
If the document contains keyword(s) or semantic meaning related to the question, grade it as relevant.
|
| 62 |
+
Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question."""
|
| 63 |
+
|
| 64 |
+
grade_prompt = ChatPromptTemplate.from_messages([
|
| 65 |
+
("system", system),
|
| 66 |
+
("human", "Retrieved document: \n\n {documents} \n\n User question: {question}")
|
| 67 |
+
])
|
| 68 |
+
|
| 69 |
+
retrieval_grader = grade_prompt | structured_llm_grader
|
| 70 |
+
|
| 71 |
+
# RAG Prompt template
|
| 72 |
+
prompt = PromptTemplate(
|
| 73 |
+
template='''
|
| 74 |
+
You are a Registered Investment Advisor with expertise in Indian financial markets and client relations.
|
| 75 |
+
You must understand what the user is asking about their financial investments and respond to their queries based on the information in the documents only.
|
| 76 |
+
|
| 77 |
+
Use the following documents to answer the question. If you do not know the answer, say you don't know.
|
| 78 |
+
|
| 79 |
+
Query: {question}
|
| 80 |
+
Documents: {context}
|
| 81 |
+
''',
|
| 82 |
+
input_variables=['question', 'context']
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
rag_chain = prompt | llm | StrOutputParser()
|
| 86 |
+
|
| 87 |
+
# Web search tool for adding data from websites
|
| 88 |
+
web_search_tool = TavilySearchResults(api_key=os.environ.get('TAVILY_API_KEY'), k=5)
|
| 89 |
+
|
| 90 |
+
# Load website data
|
| 91 |
+
try:
|
| 92 |
+
print("Loading web data...")
|
| 93 |
+
docs = []
|
| 94 |
+
for i in url:
|
| 95 |
+
try:
|
| 96 |
+
docs.append(WebBaseLoader(i).load())
|
| 97 |
+
except Exception as e:
|
| 98 |
+
print(f"Error loading {i}: {e}")
|
| 99 |
+
|
| 100 |
+
docs_list = [item for sublist in docs for item in sublist]
|
| 101 |
+
|
| 102 |
+
# Split documents into chunks
|
| 103 |
+
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
|
| 104 |
+
chunk_size=1000,
|
| 105 |
+
chunk_overlap=100
|
| 106 |
+
)
|
| 107 |
+
doc_splits = text_splitter.split_documents(docs_list)
|
| 108 |
+
|
| 109 |
+
# VectorStore from the web-scraped documents
|
| 110 |
+
vectorstore = SKLearnVectorStore.from_documents(
|
| 111 |
+
documents=doc_splits,
|
| 112 |
+
embedding=embedding_model
|
| 113 |
+
)
|
| 114 |
+
retriever_web = vectorstore.as_retriever(search_kwargs={"k": 5})
|
| 115 |
+
print(f"Loaded {len(doc_splits)} document chunks from web sources")
|
| 116 |
+
except Exception as e:
|
| 117 |
+
print(f"Error in web data processing: {e}")
|
| 118 |
+
# Create a simple retriever that returns empty results if web loading fails
|
| 119 |
+
retriever_web = lambda x: []
|
| 120 |
+
|
| 121 |
+
# Define Graph states and transitions
|
| 122 |
+
class GraphState(TypedDict):
|
| 123 |
+
question: str
|
| 124 |
+
generation: Optional[str]
|
| 125 |
+
need_web_search: Optional[str] # Changed from 'web_search' to 'need_web_search'
|
| 126 |
+
documents: List
|
| 127 |
+
|
| 128 |
+
def retrieve_db(state):
|
| 129 |
+
"""Gather data for the query."""
|
| 130 |
+
question = state['question']
|
| 131 |
+
if retriever:
|
| 132 |
+
try:
|
| 133 |
+
results = retriever.invoke(question)
|
| 134 |
+
return {'documents': results, 'question': question}
|
| 135 |
+
except Exception as e:
|
| 136 |
+
print(f"Retriever error: {e}")
|
| 137 |
+
|
| 138 |
+
# If retriever fails or doesn't exist, return empty documents
|
| 139 |
+
return {'documents': [], 'question': question, 'need_web_search': 'yes'}
|
| 140 |
+
|
| 141 |
+
def grade_docs(state):
|
| 142 |
+
"""Grades the docs generated by the retriever_db"""
|
| 143 |
+
question = state['question']
|
| 144 |
+
docs = state['documents']
|
| 145 |
+
|
| 146 |
+
if not docs:
|
| 147 |
+
return {"documents": [], 'question': question, 'need_web_search': 'yes'}
|
| 148 |
+
|
| 149 |
+
filtered_data = []
|
| 150 |
+
web_search_needed = "no"
|
| 151 |
+
|
| 152 |
+
try:
|
| 153 |
+
for doc in docs:
|
| 154 |
+
doc_content = doc.page_content if hasattr(doc, 'page_content') else str(doc)
|
| 155 |
+
score = retrieval_grader.invoke({'question': question, 'documents': doc_content})
|
| 156 |
+
grade = score.binary_score
|
| 157 |
+
if grade == 'yes':
|
| 158 |
+
filtered_data.append(doc)
|
| 159 |
+
except Exception as e:
|
| 160 |
+
print(f"Error in document grading: {e}")
|
| 161 |
+
web_search_needed = "yes"
|
| 162 |
+
|
| 163 |
+
# If no relevant documents were found, trigger web search
|
| 164 |
+
if not filtered_data:
|
| 165 |
+
web_search_needed = "yes"
|
| 166 |
+
|
| 167 |
+
return {
|
| 168 |
+
"documents": filtered_data,
|
| 169 |
+
'question': question,
|
| 170 |
+
'need_web_search': web_search_needed # Updated key name
|
| 171 |
+
}
|
| 172 |
+
|
| 173 |
+
def decide(state):
|
| 174 |
+
"""Decide if the generation should be based on DB or web search DATA"""
|
| 175 |
+
web = state.get('need_web_search', 'no') # Updated key name
|
| 176 |
+
if web == 'yes':
|
| 177 |
+
return 'web_search'
|
| 178 |
+
else:
|
| 179 |
+
return 'generate'
|
| 180 |
+
|
| 181 |
+
def web_search(state):
|
| 182 |
+
"""Based on the Grade, will proceed with WebSearch within the given URL's."""
|
| 183 |
+
question = state['question']
|
| 184 |
+
documents = state.get("documents", [])
|
| 185 |
+
|
| 186 |
+
try:
|
| 187 |
+
# First try website-specific retriever
|
| 188 |
+
docs = retriever_web.invoke(question)
|
| 189 |
+
if not docs:
|
| 190 |
+
# If no results, try Tavily search
|
| 191 |
+
search_results = web_search_tool.invoke(question)
|
| 192 |
+
data = "\n".join(result["content"] for result in search_results)
|
| 193 |
+
docs = [Document(page_content=data)]
|
| 194 |
+
except Exception as e:
|
| 195 |
+
print(f"Web search error: {e}")
|
| 196 |
+
# Create a fallback document if search fails
|
| 197 |
+
docs = [Document(page_content="Unable to retrieve additional information.")]
|
| 198 |
+
|
| 199 |
+
# Combine existing documents with new ones
|
| 200 |
+
all_docs = documents + docs
|
| 201 |
+
|
| 202 |
+
return {'documents': all_docs, 'question': question}
|
| 203 |
+
|
| 204 |
+
def generate(state):
|
| 205 |
+
"""Generate response based on retrieved documents"""
|
| 206 |
+
documents = state.get('documents', [])
|
| 207 |
+
question = state['question']
|
| 208 |
+
|
| 209 |
+
# Convert documents to text for the context
|
| 210 |
+
if documents:
|
| 211 |
+
try:
|
| 212 |
+
context = "\n\n".join(
|
| 213 |
+
doc.page_content if hasattr(doc, 'page_content') else str(doc)
|
| 214 |
+
for doc in documents
|
| 215 |
+
)
|
| 216 |
+
except Exception as e:
|
| 217 |
+
print(f"Error processing documents: {e}")
|
| 218 |
+
context = "Error retrieving relevant information."
|
| 219 |
+
else:
|
| 220 |
+
context = "No relevant information found."
|
| 221 |
+
|
| 222 |
+
try:
|
| 223 |
+
response = rag_chain.invoke({'context': context, 'question': question})
|
| 224 |
+
except Exception as e:
|
| 225 |
+
print(f"Generation error: {e}")
|
| 226 |
+
response = "I apologize, but I encountered an error while generating a response. Please try asking your question again."
|
| 227 |
+
|
| 228 |
+
return {
|
| 229 |
+
'documents': documents,
|
| 230 |
+
'question': question,
|
| 231 |
+
'generation': response
|
| 232 |
+
}
|
| 233 |
+
|
| 234 |
+
# Compile Workflow
|
| 235 |
+
workflow = StateGraph(GraphState)
|
| 236 |
+
workflow.add_node("retrieve", retrieve_db)
|
| 237 |
+
workflow.add_node("grader", grade_docs)
|
| 238 |
+
workflow.add_node("web_search", web_search) # Now this won't conflict with the state key
|
| 239 |
+
workflow.add_node("generate", generate)
|
| 240 |
+
|
| 241 |
+
workflow.add_edge(START, "retrieve")
|
| 242 |
+
workflow.add_edge("retrieve", "grader")
|
| 243 |
+
workflow.add_conditional_edges(
|
| 244 |
+
"grader",
|
| 245 |
+
decide,
|
| 246 |
+
{
|
| 247 |
+
'web_search': 'web_search',
|
| 248 |
+
'generate': 'generate'
|
| 249 |
+
},
|
| 250 |
+
)
|
| 251 |
+
workflow.add_edge("web_search", "generate")
|
| 252 |
+
workflow.add_edge("generate", END)
|
| 253 |
+
|
| 254 |
+
# Compile the graph
|
| 255 |
+
crag = workflow.compile()
|
| 256 |
+
|
| 257 |
+
# Define Gradio Interface with proper chat history management
|
| 258 |
+
def process_query(user_input, history):
|
| 259 |
+
# Initialize history if it's None
|
| 260 |
+
if history is None:
|
| 261 |
+
history = []
|
| 262 |
+
|
| 263 |
+
# Add user input to history
|
| 264 |
+
history.append((user_input, ""))
|
| 265 |
+
|
| 266 |
+
# Process the query
|
| 267 |
+
inputs = {"question": user_input}
|
| 268 |
+
response = ""
|
| 269 |
+
|
| 270 |
+
try:
|
| 271 |
+
# Execute the graph
|
| 272 |
+
result = crag.invoke(inputs)
|
| 273 |
+
if result and 'generation' in result:
|
| 274 |
+
response = result['generation']
|
| 275 |
+
else:
|
| 276 |
+
response = "I couldn't find relevant information to answer your question."
|
| 277 |
+
except Exception as e:
|
| 278 |
+
print(f"Error in crag execution: {e}")
|
| 279 |
+
response = "I encountered an error while processing your request. Please try again."
|
| 280 |
+
|
| 281 |
+
# Update the last response in history
|
| 282 |
+
history[-1] = (user_input, response)
|
| 283 |
+
|
| 284 |
+
return history, ""
|
| 285 |
+
|
| 286 |
+
# Gradio Interface
|
| 287 |
+
with gr.Blocks() as demo:
|
| 288 |
+
gr.Markdown("# 🤖 RAG-Powered Financial Advisor Chatbot")
|
| 289 |
+
|
| 290 |
+
chatbot = gr.Chatbot(
|
| 291 |
+
[],
|
| 292 |
+
elem_id="chatbot",
|
| 293 |
+
bubble_full_width=False,
|
| 294 |
+
height=600,
|
| 295 |
+
avatar_images=(None, "🤖")
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
with gr.Row():
|
| 299 |
+
msg = gr.Textbox(
|
| 300 |
+
placeholder="Ask me anything about Indian financial markets...",
|
| 301 |
+
label="Your question:",
|
| 302 |
+
scale=9
|
| 303 |
+
)
|
| 304 |
+
submit_btn = gr.Button("Send", scale=1)
|
| 305 |
+
|
| 306 |
+
clear_btn = gr.Button("Clear Chat")
|
| 307 |
+
|
| 308 |
+
# Set up event handlers
|
| 309 |
+
submit_click_event = submit_btn.click(
|
| 310 |
+
process_query,
|
| 311 |
+
inputs=[msg, chatbot],
|
| 312 |
+
outputs=[chatbot, msg]
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
msg.submit(
|
| 316 |
+
process_query,
|
| 317 |
+
inputs=[msg, chatbot],
|
| 318 |
+
outputs=[chatbot, msg]
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
clear_btn.click(lambda: [], outputs=[chatbot])
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
if __name__ == "__main__":
|
| 325 |
+
demo.launch()
|