Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
hifigan vocoder
Browse files
resources/app/python/hifigan/config.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"resblock": "1",
|
| 3 |
+
"num_gpus": 0,
|
| 4 |
+
"batch_size": 46,
|
| 5 |
+
"learning_rate": 0.0002,
|
| 6 |
+
"adam_b1": 0.8,
|
| 7 |
+
"adam_b2": 0.99,
|
| 8 |
+
"lr_decay": 0.999,
|
| 9 |
+
"seed": 1234,
|
| 10 |
+
|
| 11 |
+
"upsample_rates": [8,8,2,2],
|
| 12 |
+
"upsample_kernel_sizes": [16,16,4,4],
|
| 13 |
+
"upsample_initial_channel": 512,
|
| 14 |
+
"resblock_kernel_sizes": [3,7,11],
|
| 15 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
| 16 |
+
|
| 17 |
+
"segment_size": 8192,
|
| 18 |
+
"num_mels": 80,
|
| 19 |
+
"num_freq": 1025,
|
| 20 |
+
"n_fft": 1024,
|
| 21 |
+
"hop_size": 256,
|
| 22 |
+
"win_size": 1024,
|
| 23 |
+
|
| 24 |
+
"sampling_rate": 22050,
|
| 25 |
+
|
| 26 |
+
"fmin": 0,
|
| 27 |
+
"fmax": 8000,
|
| 28 |
+
"fmax_for_loss": null,
|
| 29 |
+
|
| 30 |
+
"num_workers": 8,
|
| 31 |
+
|
| 32 |
+
"dist_config": {
|
| 33 |
+
"dist_backend": "nccl",
|
| 34 |
+
"dist_url": "tcp://localhost:54321",
|
| 35 |
+
"world_size": 1
|
| 36 |
+
}
|
| 37 |
+
}
|
resources/app/python/hifigan/hifi.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:771eaf4876485a35e25577563d390c262e23c2421e4a8c929eacfde34a5b7a60
|
| 3 |
+
size 55788858
|
resources/app/python/hifigan/model.py
ADDED
|
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
| 8 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
| 9 |
+
# from utils import init_weights, get_padding
|
| 10 |
+
def init_weights(m, mean=0.0, std=0.01):
|
| 11 |
+
classname = m.__class__.__name__
|
| 12 |
+
if classname.find("Conv") != -1:
|
| 13 |
+
m.weight.data.normal_(mean, std)
|
| 14 |
+
def get_padding(kernel_size, dilation=1):
|
| 15 |
+
return int((kernel_size*dilation - dilation)/2)
|
| 16 |
+
|
| 17 |
+
LRELU_SLOPE = 0.1
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class ResBlock1(torch.nn.Module):
|
| 21 |
+
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
|
| 22 |
+
super(ResBlock1, self).__init__()
|
| 23 |
+
self.h = h
|
| 24 |
+
self.convs1 = nn.ModuleList([
|
| 25 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
| 26 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
| 27 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
| 28 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
| 29 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
| 30 |
+
padding=get_padding(kernel_size, dilation[2])))
|
| 31 |
+
])
|
| 32 |
+
self.convs1.apply(init_weights)
|
| 33 |
+
|
| 34 |
+
self.convs2 = nn.ModuleList([
|
| 35 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
| 36 |
+
padding=get_padding(kernel_size, 1))),
|
| 37 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
| 38 |
+
padding=get_padding(kernel_size, 1))),
|
| 39 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
| 40 |
+
padding=get_padding(kernel_size, 1)))
|
| 41 |
+
])
|
| 42 |
+
self.convs2.apply(init_weights)
|
| 43 |
+
|
| 44 |
+
def forward(self, x):
|
| 45 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
| 46 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
| 47 |
+
xt = c1(xt)
|
| 48 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
| 49 |
+
xt = c2(xt)
|
| 50 |
+
x = xt + x
|
| 51 |
+
return x
|
| 52 |
+
|
| 53 |
+
def remove_weight_norm(self):
|
| 54 |
+
for l in self.convs1:
|
| 55 |
+
remove_weight_norm(l)
|
| 56 |
+
for l in self.convs2:
|
| 57 |
+
remove_weight_norm(l)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
class ResBlock2(torch.nn.Module):
|
| 61 |
+
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)):
|
| 62 |
+
super(ResBlock2, self).__init__()
|
| 63 |
+
self.h = h
|
| 64 |
+
self.convs = nn.ModuleList([
|
| 65 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
| 66 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
| 67 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
| 68 |
+
padding=get_padding(kernel_size, dilation[1])))
|
| 69 |
+
])
|
| 70 |
+
self.convs.apply(init_weights)
|
| 71 |
+
|
| 72 |
+
def forward(self, x):
|
| 73 |
+
for c in self.convs:
|
| 74 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
| 75 |
+
xt = c(xt)
|
| 76 |
+
x = xt + x
|
| 77 |
+
return x
|
| 78 |
+
|
| 79 |
+
def remove_weight_norm(self):
|
| 80 |
+
for l in self.convs:
|
| 81 |
+
remove_weight_norm(l)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
class Generator(torch.nn.Module):
|
| 85 |
+
def __init__(self, h):
|
| 86 |
+
super(Generator, self).__init__()
|
| 87 |
+
self.h = h
|
| 88 |
+
self.num_kernels = len(h.resblock_kernel_sizes)
|
| 89 |
+
self.num_upsamples = len(h.upsample_rates)
|
| 90 |
+
self.conv_pre = weight_norm(Conv1d(80, h.upsample_initial_channel, 7, 1, padding=3))
|
| 91 |
+
resblock = ResBlock1 if h.resblock == '1' else ResBlock2
|
| 92 |
+
|
| 93 |
+
self.ups = nn.ModuleList()
|
| 94 |
+
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
|
| 95 |
+
self.ups.append(weight_norm(
|
| 96 |
+
ConvTranspose1d(h.upsample_initial_channel//(2**i), h.upsample_initial_channel//(2**(i+1)),
|
| 97 |
+
k, u, padding=(k-u)//2)))
|
| 98 |
+
|
| 99 |
+
self.resblocks = nn.ModuleList()
|
| 100 |
+
for i in range(len(self.ups)):
|
| 101 |
+
ch = h.upsample_initial_channel//(2**(i+1))
|
| 102 |
+
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
|
| 103 |
+
self.resblocks.append(resblock(h, ch, k, d))
|
| 104 |
+
|
| 105 |
+
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
|
| 106 |
+
self.ups.apply(init_weights)
|
| 107 |
+
self.conv_post.apply(init_weights)
|
| 108 |
+
|
| 109 |
+
def forward(self, x):
|
| 110 |
+
x = self.conv_pre(x)
|
| 111 |
+
for i in range(self.num_upsamples):
|
| 112 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
| 113 |
+
x = self.ups[i](x)
|
| 114 |
+
xs = None
|
| 115 |
+
for j in range(self.num_kernels):
|
| 116 |
+
if xs is None:
|
| 117 |
+
xs = self.resblocks[i*self.num_kernels+j](x)
|
| 118 |
+
else:
|
| 119 |
+
xs += self.resblocks[i*self.num_kernels+j](x)
|
| 120 |
+
x = xs / self.num_kernels
|
| 121 |
+
x = F.leaky_relu(x)
|
| 122 |
+
x = self.conv_post(x)
|
| 123 |
+
x = torch.tanh(x)
|
| 124 |
+
|
| 125 |
+
return x
|
| 126 |
+
|
| 127 |
+
def remove_weight_norm(self):
|
| 128 |
+
print('Removing weight norm...')
|
| 129 |
+
for l in self.ups:
|
| 130 |
+
remove_weight_norm(l)
|
| 131 |
+
for l in self.resblocks:
|
| 132 |
+
l.remove_weight_norm()
|
| 133 |
+
remove_weight_norm(self.conv_pre)
|
| 134 |
+
remove_weight_norm(self.conv_post)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
class DiscriminatorP(torch.nn.Module):
|
| 138 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
| 139 |
+
super(DiscriminatorP, self).__init__()
|
| 140 |
+
self.period = period
|
| 141 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
| 142 |
+
self.convs = nn.ModuleList([
|
| 143 |
+
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
| 144 |
+
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
| 145 |
+
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
| 146 |
+
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
| 147 |
+
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
|
| 148 |
+
])
|
| 149 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
| 150 |
+
|
| 151 |
+
def forward(self, x):
|
| 152 |
+
fmap = []
|
| 153 |
+
|
| 154 |
+
# 1d to 2d
|
| 155 |
+
b, c, t = x.shape
|
| 156 |
+
if t % self.period != 0: # pad first
|
| 157 |
+
n_pad = self.period - (t % self.period)
|
| 158 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
| 159 |
+
t = t + n_pad
|
| 160 |
+
x = x.view(b, c, t // self.period, self.period)
|
| 161 |
+
|
| 162 |
+
for l in self.convs:
|
| 163 |
+
x = l(x)
|
| 164 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
| 165 |
+
fmap.append(x)
|
| 166 |
+
x = self.conv_post(x)
|
| 167 |
+
fmap.append(x)
|
| 168 |
+
x = torch.flatten(x, 1, -1)
|
| 169 |
+
|
| 170 |
+
return x, fmap
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
| 174 |
+
def __init__(self):
|
| 175 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
| 176 |
+
self.discriminators = nn.ModuleList([
|
| 177 |
+
DiscriminatorP(2),
|
| 178 |
+
DiscriminatorP(3),
|
| 179 |
+
DiscriminatorP(5),
|
| 180 |
+
DiscriminatorP(7),
|
| 181 |
+
DiscriminatorP(11),
|
| 182 |
+
])
|
| 183 |
+
|
| 184 |
+
def forward(self, y, y_hat):
|
| 185 |
+
y_d_rs = []
|
| 186 |
+
y_d_gs = []
|
| 187 |
+
fmap_rs = []
|
| 188 |
+
fmap_gs = []
|
| 189 |
+
for i, d in enumerate(self.discriminators):
|
| 190 |
+
y_d_r, fmap_r = d(y)
|
| 191 |
+
y_d_g, fmap_g = d(y_hat)
|
| 192 |
+
y_d_rs.append(y_d_r)
|
| 193 |
+
fmap_rs.append(fmap_r)
|
| 194 |
+
y_d_gs.append(y_d_g)
|
| 195 |
+
fmap_gs.append(fmap_g)
|
| 196 |
+
|
| 197 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
class DiscriminatorS(torch.nn.Module):
|
| 201 |
+
def __init__(self, use_spectral_norm=False):
|
| 202 |
+
super(DiscriminatorS, self).__init__()
|
| 203 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
| 204 |
+
self.convs = nn.ModuleList([
|
| 205 |
+
norm_f(Conv1d(1, 128, 15, 1, padding=7)),
|
| 206 |
+
norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)),
|
| 207 |
+
norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)),
|
| 208 |
+
norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)),
|
| 209 |
+
norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
|
| 210 |
+
norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
|
| 211 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
| 212 |
+
])
|
| 213 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
| 214 |
+
|
| 215 |
+
def forward(self, x):
|
| 216 |
+
fmap = []
|
| 217 |
+
for l in self.convs:
|
| 218 |
+
x = l(x)
|
| 219 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
| 220 |
+
fmap.append(x)
|
| 221 |
+
x = self.conv_post(x)
|
| 222 |
+
fmap.append(x)
|
| 223 |
+
x = torch.flatten(x, 1, -1)
|
| 224 |
+
|
| 225 |
+
return x, fmap
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
class MultiScaleDiscriminator(torch.nn.Module):
|
| 229 |
+
def __init__(self):
|
| 230 |
+
super(MultiScaleDiscriminator, self).__init__()
|
| 231 |
+
self.discriminators = nn.ModuleList([
|
| 232 |
+
DiscriminatorS(use_spectral_norm=True),
|
| 233 |
+
DiscriminatorS(),
|
| 234 |
+
DiscriminatorS(),
|
| 235 |
+
])
|
| 236 |
+
self.meanpools = nn.ModuleList([
|
| 237 |
+
AvgPool1d(4, 2, padding=2),
|
| 238 |
+
AvgPool1d(4, 2, padding=2)
|
| 239 |
+
])
|
| 240 |
+
|
| 241 |
+
def forward(self, y, y_hat):
|
| 242 |
+
y_d_rs = []
|
| 243 |
+
y_d_gs = []
|
| 244 |
+
fmap_rs = []
|
| 245 |
+
fmap_gs = []
|
| 246 |
+
for i, d in enumerate(self.discriminators):
|
| 247 |
+
if i != 0:
|
| 248 |
+
y = self.meanpools[i-1](y)
|
| 249 |
+
y_hat = self.meanpools[i-1](y_hat)
|
| 250 |
+
y_d_r, fmap_r = d(y)
|
| 251 |
+
y_d_g, fmap_g = d(y_hat)
|
| 252 |
+
y_d_rs.append(y_d_r)
|
| 253 |
+
fmap_rs.append(fmap_r)
|
| 254 |
+
y_d_gs.append(y_d_g)
|
| 255 |
+
fmap_gs.append(fmap_g)
|
| 256 |
+
|
| 257 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
def feature_loss(fmap_r, fmap_g):
|
| 261 |
+
loss = 0
|
| 262 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
| 263 |
+
for rl, gl in zip(dr, dg):
|
| 264 |
+
loss += torch.mean(torch.abs(rl - gl))
|
| 265 |
+
|
| 266 |
+
return loss*2
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
| 270 |
+
loss = 0
|
| 271 |
+
r_losses = []
|
| 272 |
+
g_losses = []
|
| 273 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
| 274 |
+
r_loss = torch.mean((1-dr)**2)
|
| 275 |
+
g_loss = torch.mean(dg**2)
|
| 276 |
+
loss += (r_loss + g_loss)
|
| 277 |
+
r_losses.append(r_loss.item())
|
| 278 |
+
g_losses.append(g_loss.item())
|
| 279 |
+
|
| 280 |
+
return loss, r_losses, g_losses
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
def generator_loss(disc_outputs):
|
| 284 |
+
loss = 0
|
| 285 |
+
gen_losses = []
|
| 286 |
+
for dg in disc_outputs:
|
| 287 |
+
l = torch.mean((1-dg)**2)
|
| 288 |
+
gen_losses.append(l)
|
| 289 |
+
loss += l
|
| 290 |
+
|
| 291 |
+
return loss, gen_losses
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
# from python.hifigan.hifi_gan import Generator
|
| 297 |
+
|
| 298 |
+
class AttrDict(dict):
|
| 299 |
+
def __init__(self, *args, **kwargs):
|
| 300 |
+
super(AttrDict, self).__init__(*args, **kwargs)
|
| 301 |
+
self.__dict__ = self
|
| 302 |
+
|
| 303 |
+
class HiFi_GAN(object):
|
| 304 |
+
def __init__(self, logger, PROD, device, models_manager):
|
| 305 |
+
super(HiFi_GAN, self).__init__()
|
| 306 |
+
|
| 307 |
+
self.logger = logger
|
| 308 |
+
self.PROD = PROD
|
| 309 |
+
self.models_manager = models_manager
|
| 310 |
+
self.device = device
|
| 311 |
+
self.ckpt_path = None
|
| 312 |
+
|
| 313 |
+
config_file = os.path.join(f'{"./resources/app" if self.PROD else "."}/python/hifigan/config.json')
|
| 314 |
+
with open(config_file) as f:
|
| 315 |
+
data = f.read()
|
| 316 |
+
json_config = json.loads(data)
|
| 317 |
+
h = AttrDict(json_config)
|
| 318 |
+
|
| 319 |
+
self.model = Generator(h).to(self.device)
|
| 320 |
+
self.isReady = True
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
def load_state_dict (self, ckpt_path, sd):
|
| 324 |
+
self.ckpt_path = ckpt_path
|
| 325 |
+
self.model.load_state_dict(sd["generator"])
|
| 326 |
+
|
| 327 |
+
def set_device (self, device):
|
| 328 |
+
self.device = device
|
| 329 |
+
self.model = self.model.to(device)
|
| 330 |
+
self.model.device = device
|