Spaces:
Runtime error
Runtime error
| import os | |
| import torch | |
| import json | |
| from fastapi import FastAPI | |
| from pydantic import BaseModel | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
| from peft import PeftModel, PeftConfig | |
| import uvicorn | |
| from huggingface_hub import login, hf_hub_download | |
| # Authenticate with Hugging Face Hub using the HF_TOKEN environment variable | |
| HF_TOKEN = os.getenv("HF_TOKEN") | |
| if HF_TOKEN: | |
| login(token=HF_TOKEN) | |
| else: | |
| raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.") | |
| # Define a Pydantic model for request validation | |
| class Query(BaseModel): | |
| text: str | |
| app = FastAPI(title="Financial Chatbot API") | |
| # Load the base model from Meta-Llama | |
| base_model_name = "meta-llama/Llama-3.2-3B" | |
| base_model = AutoModelForCausalLM.from_pretrained( | |
| base_model_name, | |
| device_map="auto", | |
| trust_remote_code=True | |
| ) | |
| # Load the tokenizer from the base model | |
| tokenizer = AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True) | |
| tokenizer.pad_token = tokenizer.eos_token | |
| # Load the finetuned adapter using PEFT with handling for eva_config | |
| peft_model_id = "Phoenix21/llama-3-2-3b-finetuned-finance_checkpoint2" | |
| try: | |
| # Try direct loading first | |
| model = PeftModel.from_pretrained(base_model, peft_model_id) | |
| except TypeError as e: | |
| if "eva_config" in str(e): | |
| print("Handling eva_config compatibility issue...") | |
| # Download config but handle it manually | |
| config_path = hf_hub_download(repo_id=peft_model_id, filename="adapter_config.json") | |
| with open(config_path, 'r') as f: | |
| config_dict = json.load(f) | |
| # Remove the problematic parameter | |
| if 'eva_config' in config_dict: | |
| del config_dict['eva_config'] | |
| # Save modified config | |
| modified_config_path = "modified_adapter_config.json" | |
| with open(modified_config_path, 'w') as f: | |
| json.dump(config_dict, f) | |
| # Load the config from the modified file | |
| config = PeftConfig.from_json_file(modified_config_path) | |
| # Ensure the config has the correct path | |
| config._name_or_path = peft_model_id | |
| # Now load with the modified config | |
| model = PeftModel.from_pretrained(base_model, peft_model_id, config=config) | |
| else: | |
| # If it's a different error, raise it | |
| raise | |
| # Create a text-generation pipeline using the loaded model and tokenizer | |
| chat_pipe = pipeline( | |
| "text-generation", | |
| model=model, | |
| tokenizer=tokenizer, | |
| max_new_tokens=256, | |
| temperature=0.7, | |
| top_p=0.95, | |
| ) | |
| def generate(query: Query): | |
| prompt = f"Question: {query.text}\nAnswer: " | |
| response = chat_pipe(prompt)[0]["generated_text"] | |
| # Extract just the answer part from the response | |
| if "Answer: " in response: | |
| response = response.split("Answer: ", 1)[1] | |
| return {"response": response} | |
| if __name__ == "__main__": | |
| port = int(os.environ.get("PORT", 7860)) | |
| uvicorn.run(app, host="0.0.0.0", port=port) |