Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,10 +5,10 @@ from pydantic import BaseModel
|
|
| 5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 6 |
from peft import PeftModel
|
| 7 |
import uvicorn
|
| 8 |
-
import json
|
| 9 |
-
from huggingface_hub import hf_hub_download, login
|
| 10 |
|
| 11 |
-
|
|
|
|
|
|
|
| 12 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 13 |
if HF_TOKEN:
|
| 14 |
login(token=HF_TOKEN)
|
|
@@ -21,55 +21,23 @@ class Query(BaseModel):
|
|
| 21 |
|
| 22 |
app = FastAPI(title="Financial Chatbot API")
|
| 23 |
|
| 24 |
-
# Load the base model
|
| 25 |
-
base_model_name = "meta-llama/Llama-3.2-3B"
|
| 26 |
-
|
| 27 |
base_model_name,
|
| 28 |
device_map="auto",
|
| 29 |
trust_remote_code=True
|
| 30 |
)
|
| 31 |
|
| 32 |
-
# Load
|
| 33 |
peft_model_id = "Phoenix21/llama-3-2-3b-finetuned-finance_checkpoint2"
|
|
|
|
| 34 |
|
| 35 |
-
#
|
| 36 |
-
try:
|
| 37 |
-
# Download the adapter_config.json file
|
| 38 |
-
config_file = hf_hub_download(
|
| 39 |
-
repo_id=peft_model_id,
|
| 40 |
-
filename="adapter_config.json",
|
| 41 |
-
token=HF_TOKEN
|
| 42 |
-
)
|
| 43 |
-
|
| 44 |
-
# Load and clean the config
|
| 45 |
-
with open(config_file, 'r') as f:
|
| 46 |
-
config_dict = json.load(f)
|
| 47 |
-
|
| 48 |
-
# Remove problematic fields if they exist
|
| 49 |
-
if "eva_config" in config_dict:
|
| 50 |
-
del config_dict["eva_config"]
|
| 51 |
-
|
| 52 |
-
# Load the adapter directly with the cleaned config
|
| 53 |
-
model = PeftModel.from_pretrained(
|
| 54 |
-
model,
|
| 55 |
-
peft_model_id,
|
| 56 |
-
config=config_dict
|
| 57 |
-
)
|
| 58 |
-
except Exception as e:
|
| 59 |
-
print(f"Error loading adapter: {e}")
|
| 60 |
-
# Fallback to direct loading if the above fails
|
| 61 |
-
model = PeftModel.from_pretrained(
|
| 62 |
-
model,
|
| 63 |
-
peft_model_id,
|
| 64 |
-
# Use this config parameter to ignore unknown parameters
|
| 65 |
-
config=None
|
| 66 |
-
)
|
| 67 |
-
|
| 68 |
-
# Load tokenizer from the base model
|
| 69 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True)
|
| 70 |
tokenizer.pad_token = tokenizer.eos_token
|
| 71 |
|
| 72 |
-
# Create a text-generation pipeline
|
| 73 |
chat_pipe = pipeline(
|
| 74 |
"text-generation",
|
| 75 |
model=model,
|
|
@@ -83,10 +51,8 @@ chat_pipe = pipeline(
|
|
| 83 |
def generate(query: Query):
|
| 84 |
prompt = f"Question: {query.text}\nAnswer: "
|
| 85 |
response = chat_pipe(prompt)[0]["generated_text"]
|
| 86 |
-
|
| 87 |
-
answer = response.split("Answer: ")[-1].strip()
|
| 88 |
-
return {"response": answer}
|
| 89 |
|
| 90 |
if __name__ == "__main__":
|
| 91 |
port = int(os.environ.get("PORT", 7860))
|
| 92 |
-
uvicorn.run(app, host="0.0.0.0", port=port)
|
|
|
|
| 5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 6 |
from peft import PeftModel
|
| 7 |
import uvicorn
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
from huggingface_hub import login
|
| 10 |
+
|
| 11 |
+
# Authenticate with Hugging Face Hub using the HF_TOKEN environment variable
|
| 12 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 13 |
if HF_TOKEN:
|
| 14 |
login(token=HF_TOKEN)
|
|
|
|
| 21 |
|
| 22 |
app = FastAPI(title="Financial Chatbot API")
|
| 23 |
|
| 24 |
+
# Load the base model from Meta-Llama
|
| 25 |
+
base_model_name = "meta-llama/Llama-3.2-3B"
|
| 26 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 27 |
base_model_name,
|
| 28 |
device_map="auto",
|
| 29 |
trust_remote_code=True
|
| 30 |
)
|
| 31 |
|
| 32 |
+
# Load the finetuned adapter using PEFT
|
| 33 |
peft_model_id = "Phoenix21/llama-3-2-3b-finetuned-finance_checkpoint2"
|
| 34 |
+
model = PeftModel.from_pretrained(base_model, peft_model_id)
|
| 35 |
|
| 36 |
+
# Load the tokenizer from the base model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True)
|
| 38 |
tokenizer.pad_token = tokenizer.eos_token
|
| 39 |
|
| 40 |
+
# Create a text-generation pipeline using the loaded model and tokenizer
|
| 41 |
chat_pipe = pipeline(
|
| 42 |
"text-generation",
|
| 43 |
model=model,
|
|
|
|
| 51 |
def generate(query: Query):
|
| 52 |
prompt = f"Question: {query.text}\nAnswer: "
|
| 53 |
response = chat_pipe(prompt)[0]["generated_text"]
|
| 54 |
+
return {"response": response}
|
|
|
|
|
|
|
| 55 |
|
| 56 |
if __name__ == "__main__":
|
| 57 |
port = int(os.environ.get("PORT", 7860))
|
| 58 |
+
uvicorn.run(app, host="0.0.0.0", port=port)
|