# -*- coding: utf-8 -*- """Vizuara BioGPT from Scratch.ipynb Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1ys-b99GalAtTE9m7bGwCCACZYv2M8HjO #Vizuara AI Labs: BioGPT Pre-training + Finetuning ## Part 1: Pre-training ### 1.1 Loading the dataset """ # Colab: Download ~10 GB (uncompressed) of PubMed baseline XML import os, re, subprocess, math, requests from bs4 import BeautifulSoup from urllib.parse import urljoin BASE_URL = "https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/" TARGET_UNCOMPRESSED_GB = 1.0 DEST = "/content/pubmed_xml_subset" os.makedirs(DEST, exist_ok=True) # 1) Fetch list of .gz files from the baseline index html = requests.get(BASE_URL, timeout=60).text soup = BeautifulSoup(html, "html.parser") # All .gz files (e.g., pubmed24n0001.xml.gz) hrefs = [a.get("href") for a in soup.find_all("a", href=True)] gz_files = sorted([h for h in hrefs if h.endswith(".gz")]) print(f"Found {len(gz_files)} .gz files on the baseline index.") # 2) Download sequentially until uncompressed total ≈ target def gz_uncompressed_bytes(local_path): # Use gzip -l to read uncompressed size from footer (fast; no full decompress) out = subprocess.check_output(["gzip", "-l", local_path]).decode() # The second line has: compressed uncompressed ratio uncompressed_name lines = out.strip().splitlines() if len(lines) >= 2: parts = re.split(r"\s+", lines[1].strip()) # parts[1] = uncompressed bytes return int(parts[1]) return 0 total_uncompressed = 0 downloaded = [] for fname in gz_files: url = urljoin(BASE_URL, fname) local = os.path.join(DEST, fname) if not os.path.exists(local): print(f"→ downloading {fname} ...") # quiet, continue on partial, retry a bit ret = subprocess.call(["wget", "-q", "-c", "-O", local, url]) if ret != 0: print(f" ! failed: {fname}; skipping") if os.path.exists(local): os.remove(local) continue # read uncompressed size try: ub = gz_uncompressed_bytes(local) total_uncompressed += ub downloaded.append((fname, ub)) print(f" added {fname}: {ub/1e9:.3f} GB uncompressed | total ≈ {total_uncompressed/1e9:.3f} GB") except Exception as e: print(f" ! could not read size for {fname}: {e}") if total_uncompressed >= TARGET_UNCOMPRESSED_GB * 1e9: print("\nTarget reached. Stopping downloads.") break print(f"\nDone. Saved {len(downloaded)} files to: {DEST}") print(f"Approx. uncompressed total: {total_uncompressed/1e9:.3f} GB") """### 1.2 Converting title and abstract from XML to TXT""" # Colab cell: Parse title + abstract to plain text (one doc/line) import os, gzip, glob from lxml import etree from tqdm import tqdm SRC_DIR = "/content/pubmed_xml_subset" # where your .xml.gz files are OUT_DIR = "/content/pubmed_txt" # output folder os.makedirs(OUT_DIR, exist_ok=True) train_path = f"{OUT_DIR}/train.txt" valid_path = f"{OUT_DIR}/valid.txt" test_path = f"{OUT_DIR}/test.txt" # ----- helper: stream-parse one PubMed file ----- def yield_title_abstract(fp): # iterparse to avoid loading whole XML into RAM ctx = etree.iterparse(gzip.open(fp), events=("end",), tag="PubmedArticle") for _, elem in ctx: # Title t = elem.find(".//ArticleTitle") title = (t.text or "").strip() if t is not None else "" # Abstract may have multiple parts abs_nodes = elem.findall(".//AbstractText") abs_parts = [] for a in abs_nodes: txt = (a.text or "").strip() if txt: abs_parts.append(txt) abstract = " ".join(abs_parts).strip() if title and abstract: text = f"{title}. {abstract}" # clean newlines/tabs text = " ".join(text.split()) yield text # free memory elem.clear() while elem.getprevious() is not None: del elem.getparent()[0] del ctx # ----- collect and write ----- gz_files = sorted(glob.glob(os.path.join(SRC_DIR, "*.xml.gz"))) print(f"Found {len(gz_files)} gz files") # We'll stream all docs, then do a simple split by count. all_out = f"{OUT_DIR}/_all.txt" with open(all_out, "w", encoding="utf-8") as out: for fp in tqdm(gz_files, desc="Parsing"): for line in yield_title_abstract(fp): out.write(line + "\n") # Quick stats num_lines = sum(1 for _ in open(all_out, "r", encoding="utf-8")) print("Total docs with title+abstract:", num_lines) # Split 98% / 1% / 1% (adjust if you like) train_n = int(num_lines * 0.98) valid_n = int(num_lines * 0.01) test_n = num_lines - train_n - valid_n with open(all_out, "r", encoding="utf-8") as fin, \ open(train_path, "w", encoding="utf-8") as ftr, \ open(valid_path, "w", encoding="utf-8") as fva, \ open(test_path, "w", encoding="utf-8") as fte: for i, line in enumerate(fin): if i < train_n: ftr.write(line) elif i < train_n + valid_n: fva.write(line) else: fte.write(line) print("Wrote:") print(" ", train_path) print(" ", valid_path) print(" ", test_path) # Commented out IPython magic to ensure Python compatibility. # Colab cell: Install tools !pip -q install sacremoses==0.0.53 !sudo apt-get -y install g++ >/dev/null # fastBPE (build once) !git clone -q https://github.com/glample/fastBPE.git /content/fastBPE # %cd /content/fastBPE !g++ -std=c++11 -O3 -pthread fastBPE/main.cc -IfastBPE -o fast # %cd /content # fairseq (0.12.0 recommended for GPT2-medium arch flag) !git clone -q https://github.com/pytorch/fairseq.git /content/fairseq # %cd /content/fairseq !git checkout v0.12.0 -q !pip -q install . # %cd /content """### 1.3 Fetch the BioGPT Vocabulary and merged tokens""" # Colab cell: Grab BioGPT bpecodes/dict !wget -q -O /content/bpecodes https://raw.githubusercontent.com/microsoft/BioGPT/main/data/BioGPT/bpecodes !wget -q -O /content/dict.txt https://raw.githubusercontent.com/microsoft/BioGPT/main/data/BioGPT/dict.txt !wc -l /content/dict.txt && head -n 5 /content/dict.txt """### 1.4 Use Moses tokenizer to clean text before applying BPE""" import os from sacremoses import MosesTokenizer from tqdm.auto import tqdm TXT_DIR = "/content/pubmed_txt" BPE_DIR = "/content/pubmed_bpe" os.makedirs(BPE_DIR, exist_ok=True) mt = MosesTokenizer(lang="en") def tokenize_file(in_path, out_path, show_progress=True): # Count lines once for a nice total with open(in_path, "r", encoding="utf-8") as f: total = sum(1 for _ in f) with open(in_path, "r", encoding="utf-8") as fin, \ open(out_path, "w", encoding="utf-8") as fout: iterator = fin if show_progress: iterator = tqdm(fin, total=total, desc=f"Tokenizing {os.path.basename(in_path)}") for line in iterator: line = line.strip() if not line: continue fout.write(mt.tokenize(line, return_str=True) + "\n") for split in ["train", "valid", "test"]: tok = f"{BPE_DIR}/{split}.tok" bpe = f"{BPE_DIR}/{split}.bpe" tokenize_file(f"{TXT_DIR}/{split}.txt", tok) """### 1.5 Apply BPE to dataset""" # Commented out IPython magic to ensure Python compatibility. import os, math, subprocess, numpy as np, shutil from tqdm.auto import tqdm BPE_CODES = "/content/bpecodes" # BioGPT bpecodes DICT_TXT = "/content/dict.txt" # BioGPT dict BPE_DIR = "/content/pubmed_bpe" # where your .tok files are BIN_DIR = "/content/pubmed_memmap" TMP_DIR = "/content/_bpe_tmp" os.makedirs(BIN_DIR, exist_ok=True) os.makedirs(TMP_DIR, exist_ok=True) # --- load vocab --- token2id = {} with open(DICT_TXT, encoding="utf-8") as f: for i, line in enumerate(f): tok = line.split()[0] token2id[tok] = i # choose a fallback id ONLY IF we see OOVs later fallback_id = token2id.get("", next(iter(token2id.values()))) # prefer EOS, else first token # --- ensure fastBPE binary exists --- if not os.path.exists("/content/fastBPE/fast"): !git clone -q https://github.com/glample/fastBPE.git /content/fastBPE # %cd /content/fastBPE !g++ -std=c++11 -O3 -pthread fastBPE/main.cc -IfastBPE -o fast # %cd /content def line_count(path): c = 0 with open(path, encoding="utf-8") as f: for _ in f: c += 1 return c def apply_bpe_with_progress(tok_file, bpe_file, shards=50): total_lines = line_count(tok_file) if total_lines == 0: open(bpe_file, "w").close() return shards = max(1, min(shards, total_lines)) lines_per = math.ceil(total_lines / shards) split_dir = os.path.join(TMP_DIR, "split") out_dir = os.path.join(TMP_DIR, "bpe_parts") os.makedirs(split_dir, exist_ok=True) os.makedirs(out_dir, exist_ok=True) # 1) split with progress with open(tok_file, encoding="utf-8") as fin: shard_idx = 0 line_idx = 0 fout = None pbar = tqdm(total=total_lines, desc=f"Splitting {os.path.basename(tok_file)}") for line in fin: if line_idx % lines_per == 0: if fout: fout.close() shard_idx += 1 fout = open(os.path.join(split_dir, f"part_{shard_idx:05d}.tok"), "w", encoding="utf-8") fout.write(line) line_idx += 1 pbar.update(1) if fout: fout.close() pbar.close() # 2) BPE on each shard with progress parts = sorted([p for p in os.listdir(split_dir) if p.endswith(".tok")]) for p in tqdm(parts, desc="Applying BPE to shards"): src = os.path.join(split_dir, p) dst = os.path.join(out_dir, p.replace(".tok", ".bpe")) subprocess.check_call(["/content/fastBPE/fast", "applybpe", dst, src, BPE_CODES]) # 3) concat with progress with open(bpe_file, "w", encoding="utf-8") as fout: for p in tqdm(parts, desc="Concatenating BPE shards"): src = os.path.join(out_dir, p.replace(".tok", ".bpe")) with open(src, encoding="utf-8") as fin: shutil.copyfileobj(fin, fout) shutil.rmtree(split_dir, ignore_errors=True) shutil.rmtree(out_dir, ignore_errors=True) def make_bin(split, dtype=np.uint16, shards=64): tok_file = os.path.join(BPE_DIR, f"{split}.tok") bpe_file = os.path.join(BPE_DIR, f"{split}.bpe") print(f"\n[{split}] Step 1: Applying BPE merges with progress...") apply_bpe_with_progress(tok_file, bpe_file, shards=shards) print(f"[{split}] Step 2: Counting total tokens...") total_tokens, total_lines = 0, 0 with open(bpe_file, encoding="utf-8") as f: for line in tqdm(f, desc="Counting tokens"): total_tokens += len(line.strip().split()) total_lines += 1 print(f"[{split}] Total tokens: {total_tokens:,} | lines: {total_lines:,}") print(f"[{split}] Step 3: Encoding to IDs & writing memmap...") bin_path = os.path.join(BIN_DIR, f"{split}.bin") arr = np.memmap(bin_path, dtype=dtype, mode="w+", shape=(total_tokens,)) idx = 0 oov_count = 0 oov_samples = {} with open(bpe_file, encoding="utf-8") as f: for line in tqdm(f, total=total_lines, desc=f"Encoding {split}"): toks = line.strip().split() ids = [] for t in toks: if t in token2id: ids.append(token2id[t]) else: oov_count += 1 if len(oov_samples) < 10: oov_samples[t] = oov_samples.get(t, 0) + 1 ids.append(fallback_id) # safe fallback if any OOVs occur n = len(ids) arr[idx:idx+n] = np.fromiter(ids, dtype=dtype, count=n) idx += n arr.flush() if oov_count == 0: print(f"[{split}] ✅ Saved {bin_path} (no OOVs)") else: print(f"[{split}] ⚠️ Saved {bin_path} with {oov_count} OOV tokens mapped to id {fallback_id}.") print(" First few OOV examples:", list(oov_samples.items())) for split in ["train", "valid", "test"]: make_bin(split, dtype=np.uint16, shards=64) """### 1.6 Create input-output pairs""" import os, numpy as np, torch BIN_ROOT = "/content/pubmed_memmap" # where your .bin files are DTYPE = np.uint16 # you saved with uint16 def get_batch(split): fname = "train.bin" if split == "train" else "valid.bin" path = os.path.join(BIN_ROOT, fname) data = np.memmap(path, dtype=DTYPE, mode='r') ix = torch.randint(len(data) - block_size, (batch_size,)) x = torch.stack([torch.from_numpy(data[i:i+block_size].astype(np.int64)) for i in ix]) y = torch.stack([torch.from_numpy(data[i+1:i+1+block_size].astype(np.int64)) for i in ix]) if device_type == 'cuda': x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(device, non_blocking=True) else: x, y = x.to(device), y.to(device) return x, y """### 1.7 Define BioGPT architecture""" import torch import torch.nn as nn import torch.nn.functional as F import math from dataclasses import dataclass import numpy as np from tqdm.auto import tqdm from contextlib import nullcontext import os class LayerNorm(nn.Module): def __init__(self, ndim, bias): super().__init__() self.weight = nn.Parameter(torch.ones(ndim)) self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None def forward(self, x): return F.layer_norm(x, self.weight.shape, self.weight, self.bias, 1e-5) class CausalSelfAttention(nn.Module): def __init__(self, config): super().__init__() assert config.n_embd % config.n_head == 0 self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) self.attn_dropout = nn.Dropout(config.dropout) self.resid_dropout = nn.Dropout(config.dropout) self.n_head = config.n_head self.n_embd = config.n_embd self.flash = hasattr(F, 'scaled_dot_product_attention') if not self.flash: self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)) .view(1, 1, config.block_size, config.block_size)) def forward(self, x): B, T, C = x.size() q, k, v = self.c_attn(x).split(self.n_embd, dim=2) k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) if self.flash: y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.attn_dropout.p if self.training else 0.0, is_causal=True) else: att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf')) att = F.softmax(att, dim=-1) att = self.attn_dropout(att) y = att @ v y = y.transpose(1, 2).contiguous().view(B, T, C) y = self.resid_dropout(self.c_proj(y)) return y class MLP(nn.Module): def __init__(self, config): super().__init__() self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias) self.gelu = nn.GELU() self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias) self.dropout = nn.Dropout(config.dropout) def forward(self, x): return self.dropout(self.c_proj(self.gelu(self.c_fc(x)))) class Block(nn.Module): def __init__(self, config): super().__init__() self.ln1 = LayerNorm(config.n_embd, config.bias) self.attn = CausalSelfAttention(config) self.ln2 = LayerNorm(config.n_embd, config.bias) self.mlp = MLP(config) def forward(self, x): x = x + self.attn(self.ln1(x)) x = x + self.mlp(self.ln2(x)) return x @dataclass class GPTConfig: block_size: int vocab_size: int n_layer: int n_head: int n_embd: int dropout: float = 0.0 bias: bool = True class GPT(nn.Module): def __init__(self, config): super().__init__() self.config = config self.transformer = nn.ModuleDict(dict( wte=nn.Embedding(config.vocab_size, config.n_embd), wpe=nn.Embedding(config.block_size, config.n_embd), drop=nn.Dropout(config.dropout), h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]), ln_f=LayerNorm(config.n_embd, config.bias), )) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.transformer.wte.weight = self.lm_head.weight # weight tying self.apply(self._init_weights) for pn, p in self.named_parameters(): if pn.endswith('c_proj.weight'): nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * config.n_layer)) def _init_weights(self, module): if isinstance(module, nn.Linear): nn.init.normal_(module.weight, mean=0.0, std=0.02) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): nn.init.normal_(module.weight, mean=0.0, std=0.02) def forward(self, idx, targets=None): device = idx.device b, t = idx.size() assert t <= self.config.block_size pos = torch.arange(0, t, dtype=torch.long, device=device) tok_emb = self.transformer.wte(idx) pos_emb = self.transformer.wpe(pos) x = self.transformer.drop(tok_emb + pos_emb) for block in self.transformer.h: x = block(x) x = self.transformer.ln_f(x) if targets is not None: logits = self.lm_head(x) loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) return logits, loss else: logits = self.lm_head(x[:, [-1], :]) return logits, None @torch.no_grad() def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): """ Generate tokens given a conditioning sequence. idx: Tensor of shape (B, T) """ for _ in range(max_new_tokens): idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:] logits, _ = self(idx_cond) logits = logits[:, -1, :] / temperature if top_k is not None: v, _ = torch.topk(logits, min(top_k, logits.size(-1))) logits[logits < v[:, [-1]]] = -float('Inf') probs = F.softmax(logits, dim=-1) idx_next = torch.multinomial(probs, num_samples=1) idx = torch.cat((idx, idx_next), dim=1) return idx vocab_size = sum(1 for _ in open("/content/dict.txt", encoding="utf-8")) print("Vocab size:", vocab_size) # should be ~42380 """### 1.8 Define configuration""" # Pick GPU if available, else CPU device = "cuda" if torch.cuda.is_available() else "cpu" # Optional: keep track of the type for AMP autocast device_type = 'cuda' if device == 'cuda' else 'cpu' # Now build the config vocab_size = sum(1 for _ in open("/content/dict.txt", encoding="utf-8")) config = GPTConfig( vocab_size=vocab_size, block_size=128, # or 1024 for BioGPT-scale training n_layer=6, # change to 24 for BioGPT-size n_head=6, # change to 16 for BioGPT-size n_embd=384, # change to 1024 for BioGPT-size dropout=0.1, bias=True ) # Create model and move to device model = GPT(config).to(device) print("Params (M):", sum(p.numel() for p in model.parameters())/1e6) print(vocab_size) """### 1.9 Define loss function""" def estimate_loss(model): out = {} model.eval() with torch.inference_mode(): for split in ['train', 'valid']: losses = torch.zeros(eval_iters) for k in range(eval_iters): X, Y = get_batch(split) with ctx: logits, loss = model(X, Y) losses[k] = loss.item() out[split] = losses.mean() model.train() return out """### 1.10 Define the training configuration""" # Training Config import torch from contextlib import nullcontext learning_rate = 1e-4 #more stable training, earlier 1e-4 max_iters = 120000 #increase from 25000 warmup_steps = 1000 #smoother initial train, earlier 100 min_lr = 5e-4 #lower rate, earlier 5e-4 eval_iters = 500 # increased from 100 batch_size = 32 # changed from 16, better gradient estimate block_size = 128 #changed from 64, capture longer range dependencies gradient_accumulation_steps = 32 # reduced from 50 device = "cuda" if torch.cuda.is_available() else "cpu" device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast # note: float16 data type will automatically use a GradScaler # How to use autocast https://wandb.ai/wandb_fc/tips/reports/How-To-Use-Autocast-in-PyTorch--VmlldzoyMTk4NTky #dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' # 'float32', 'bfloat16', or 'float16', the latter will auto implement a GradScaler dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' # 'float32', 'bfloat16', or 'float16', the latter will auto implement a GradScaler ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype) torch.set_default_device(device) torch.manual_seed(42) """### 1.11 Define optimizers and learning rate""" from torch.optim.lr_scheduler import LinearLR,SequentialLR, CosineAnnealingLR ##PUT IN WEIGHT DECAY, CHANGED BETA2 to 0.95 optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, betas=(0.9, 0.95), weight_decay=0.1, eps=1e-9) #weight decay for regularization scheduler_warmup = LinearLR(optimizer, total_iters = warmup_steps) #Implement linear warmup scheduler_decay = CosineAnnealingLR(optimizer,T_max = max_iters - warmup_steps, eta_min = min_lr) #Implement lr decay scheduler = SequentialLR(optimizer, schedulers=[scheduler_warmup, scheduler_decay], milestones=[warmup_steps]) #Switching from warmup to decay # https://stackoverflow.com/questions/72534859/is-gradscaler-necessary-with-mixed-precision-training-with-pytorch scaler = torch.cuda.amp.GradScaler(enabled=(dtype == 'float16')) """### 1.12 Run pre-training!""" best_val_loss = float('inf') best_model_params_path = "best_model_params.pt" train_loss_list, validation_loss_list = [], [] # Ensure model is on the correct device model = model.to(device) # In your training loop for epoch in tqdm(range(max_iters)): if epoch % eval_iters == 0 and epoch != 0: # Ensure estimate_loss uses the correct device losses = estimate_loss(model) print(f"Epoch {epoch}: train loss {losses['train']:.4f}, val loss {losses['valid']:.4f}") print(f"The current learning rate: {optimizer.param_groups[0]['lr']:.5f}") train_loss_list += [losses['train']] validation_loss_list += [losses['valid']] if losses['valid'] < best_val_loss: best_val_loss = losses['valid'] torch.save(model.state_dict(), best_model_params_path) # Ensure X and y are on the correct device X, y = get_batch("train") X, y = X.to(device), y.to(device) with ctx: logits, loss = model(X, y) loss = loss / gradient_accumulation_steps scaler.scale(loss).backward() if ((epoch + 1) % gradient_accumulation_steps == 0) or (epoch + 1 == max_iters): torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=0.5) scaler.step(optimizer) scaler.update() optimizer.zero_grad(set_to_none=True) scheduler.step() """### 1.13 Plot training and validation losses""" import matplotlib.pyplot as plt import numpy as np eval_every = eval_iters # e.g., 500 # Convert each tensor to float on CPU train_loss_np = [float(t.cpu()) for t in train_loss_list] valid_loss_np = [float(t.cpu()) for t in validation_loss_list] steps = np.arange(1, len(train_loss_np) + 1) * eval_every plt.figure(figsize=(6,4)) plt.plot(steps, train_loss_np, label='train') plt.plot(steps, valid_loss_np, label='valid') plt.xlabel('Iteration') plt.ylabel('Loss') plt.title('Pretraining loss') plt.legend() plt.grid(True, alpha=0.3) plt.show() import torch ckpt_path = "best_model_params.pt" # you saved this in the loop model.load_state_dict(torch.load(ckpt_path, map_location=device)) model.eval() """### 1.14 Evaluation on HoC Part 1 (the Hallmarks of Cancers corpus) classification dataset""" import os import pandas as pd from datasets import load_dataset from tqdm.auto import tqdm def download_and_save_hoc_splits(target_dir="/content/hoc"): """ Downloads the bigbio/hallmarks_of_cancer dataset from Hugging Face, formats it, and saves it as train.tsv, valid.tsv, and test.tsv in the specified directory. Args: target_dir (str): The directory to save the .tsv files. """ print("Downloading bigbio/hallmarks_of_cancer dataset...") try: # Load the dataset splits train_data = load_dataset("bigbio/hallmarks_of_cancer", split="train") valid_data = load_dataset("bigbio/hallmarks_of_cancer", split="validation") test_data = load_dataset("bigbio/hallmarks_of_cancer", split="test") print("Dataset downloaded successfully.") except Exception as e: print(f"Error downloading dataset: {e}") print("Please ensure you have internet access and the 'datasets' library is installed (`pip install datasets`).") return os.makedirs(target_dir, exist_ok=True) print(f"Ensured target directory exists: {target_dir}") splits = { "train": train_data, "valid": valid_data, "test": test_data, } for split_name, dataset in splits.items(): output_path = os.path.join(target_dir, f"{split_name}.tsv") print(f"Processing '{split_name}' split and saving to {output_path}...") processed_data = [] # Iterate with tqdm for progress bar for item in tqdm(dataset, desc=f"Processing {split_name}", leave=False): text = item.get("text", "") labels_list = item.get("labels", []) # Handle the [' none '] case and join the list into a string # Using '; ' as a separator, similar to how multi-label strings might appear if labels_list == [' none '] or not labels_list: label_str = "" # Represent 'none' or empty list as an empty string else: # Filter out ' none ' if mixed with others, though unlikely based on dataset viewer valid_labels = [lbl for lbl in labels_list if lbl.strip().lower() != 'none'] label_str = "; ".join(valid_labels) # Join valid labels with a separator # Append as a dictionary for easy DataFrame creation later # Replace tabs and newlines in text to avoid breaking TSV format cleaned_text = " ".join(text.split()) processed_data.append({"text": cleaned_text, "label": label_str}) # Convert to DataFrame and save as TSV if processed_data: df = pd.DataFrame(processed_data) # Ensure columns are in the order expected by load_hoc_tsv heuristic (text, label) df = df[["text", "label"]] df.to_csv(output_path, sep="\t", index=False, header=False) # Save without index and header print(f"Successfully saved {output_path}") else: print(f"No data processed for split '{split_name}'.") print("\nDataset processing complete.") # Commented out IPython magic to ensure Python compatibility. # ===== Zero-shot HoC evaluation for your PRE-TRAINED GPT (with cue + EOS delay) ===== # Uses your existing GPT / GPTConfig and loads ckpt_path="best_model_params.pt" # installs !pip -q install sacremoses==0.0.53 scikit-learn==1.5.1 import os, math, difflib, tempfile, subprocess import numpy as np import pandas as pd from tqdm.auto import tqdm import torch import torch.nn.functional as F from sklearn.metrics import precision_recall_fscore_support from sacremoses import MosesDetokenizer # ---------- paths ---------- HOC_DIR = "/content/hoc" download_and_save_hoc_splits(HOC_DIR) # train.tsv / valid.tsv / test.tsv live here BPE_CODES = "/content/bpecodes" # from BioGPT DICT_TXT = "/content/dict.txt" # from BioGPT FASTBPE_BIN = "/content/fastBPE/fast" # compiled earlier ckpt_path = ckpt_path if 'ckpt_path' in globals() else "best_model_params.pt" os.makedirs(HOC_DIR, exist_ok=True) # ---------- ensure fastBPE + BioGPT codes/dict ---------- if not os.path.exists(FASTBPE_BIN): !git clone -q https://github.com/glample/fastBPE.git /content/fastBPE # %cd /content/fastBPE !g++ -std=c++11 -O3 -pthread fastBPE/main.cc -IfastBPE -o fast # %cd /content if not os.path.exists(BPE_CODES): !wget -q -O /content/bpecodes https://raw.githubusercontent.com/microsoft/BioGPT/main/data/BioGPT/bpecodes if not os.path.exists(DICT_TXT): !wget -q -O /content/dict.txt https://raw.githubusercontent.com/microsoft/BioGPT/main/data/BioGPT/dict.txt # ---------- vocab maps ---------- token2id, id2token = {}, {} with open(DICT_TXT, encoding="utf-8") as f: for i, line in enumerate(f): tok = line.split()[0] token2id[tok] = i id2token[i] = tok eos_id = token2id.get("", 0) pad_id = eos_id # safe pad; loss is masked anyway # ---------- BPE helpers ---------- def bpe_encode_lines(lines, shard_size=2000, desc="BPE"): if len(lines) == 0: return [] out = [] with tempfile.TemporaryDirectory() as td: for start in tqdm(range(0, len(lines), shard_size), desc=f"{desc} ({len(lines)} lines)", leave=False): chunk = lines[start:start+shard_size] src = os.path.join(td, f"src_{start}.txt") dst = os.path.join(td, f"dst_{start}.bpe") with open(src, "w", encoding="utf-8") as w: for s in chunk: w.write((s or "").strip() + "\n") subprocess.check_call([FASTBPE_BIN, "applybpe", dst, src, BPE_CODES]) with open(dst, "r", encoding="utf-8") as r: for line in r: out.append(line.strip().split()) return out def tokens_to_ids(bpe_tokens): ids = [] for t in bpe_tokens: ids.append(token2id.get(t, pad_id)) return ids, 0 def bpe_decode_tokens(bpe_tokens): s = ' '.join(bpe_tokens).replace('@@ ', '') return MosesDetokenizer(lang='en').detokenize(s.split()) # ---------- load HoC test ---------- def load_hoc_tsv(path): df = pd.read_csv(path, sep="\t", header=None, dtype=str).fillna("") assert df.shape[1] == 2, f"{path} must have 2 columns" avg0, avg1 = df[0].astype(str).str.len().mean(), df[1].astype(str).str.len().mean() df.columns = ["text","label"] if avg0 > avg1 else ["label","text"] return df test_path = os.path.join(HOC_DIR, "test.tsv") assert os.path.exists(test_path), f"Missing {test_path}" test_df = load_hoc_tsv(test_path) print("Test size:", len(test_df)) # ---------- the 10 Hallmarks (no 'empty') ---------- HALLMARKS = [ "activating invasion and metastasis", "avoiding immune destruction", "cellular energetics", "enabling replicative immortality", "evading growth suppressors", "genomic instability and mutation", "inducing angiogenesis", "resisting cell death", "sustaining proliferative signaling", "tumor promoting inflammation", ] def split_labels(s: str): s = (s or "").strip() if not s: return [] for sep in [",",";","|"]: if sep in s: return [p.strip() for p in s.split(sep) if p.strip()] return [s] def normalize_labels(labs): keep, low = [], [L.lower() for L in HALLMARKS] for x in labs: xl = x.lower().strip() if xl in low: keep.append(HALLMARKS[low.index(xl)]) else: best = difflib.get_close_matches(xl, low, n=1, cutoff=0.7) if best: keep.append(HALLMARKS[low.index(best[0])]) return sorted(dict.fromkeys(keep)) # ---------- Build allowed-token mask (labels + separators + ) & first-step forbids ---------- def build_allowed_mask_and_first_forbid(vocab_size, device): allowed = set() sep_ids = set() # Hallmark tokens (all tokens that appear in these strings) for bpe in bpe_encode_lines(HALLMARKS, desc="BPE hallmarks"): ids, _ = tokens_to_ids(bpe); allowed.update(ids) # Separators; we also record their token ids to block at the first step SEPS = [", ", ",", "; ", ";", "|", " and "] for sep in SEPS: bpe = bpe_encode_lines([sep], desc="BPE seps")[0] ids, _ = tokens_to_ids(bpe) allowed.update(ids) sep_ids.update(ids) allowed.add(eos_id) mask = torch.full((vocab_size,), float('-inf'), device=device) mask[list(allowed)] = 0.0 first_forbid = torch.zeros((vocab_size,), dtype=torch.bool, device=device) first_forbid[list(sep_ids)] = True first_forbid[eos_id] = True # never allow EOS as the first generated token return mask, first_forbid device = "cuda" if torch.cuda.is_available() else "cpu" ALLOWED_MASK, FIRST_STEP_FORBID = build_allowed_mask_and_first_forbid(len(token2id), device) # ---------- Build contexts (text + textual cue) ---------- PROMPT_TEXT = " hallmarks of cancer:" # small cue after abstract PROMPT_BPE = bpe_encode_lines([PROMPT_TEXT], desc="BPE prompt")[0] PROMPT_IDS, _ = tokens_to_ids(PROMPT_BPE) def make_context_with_prompt(df): texts = df["text"].astype(str).tolist() bpes = bpe_encode_lines(texts, desc="BPE test ctx") ctx = [] for bpe in bpes: ids, _ = tokens_to_ids(bpe) ctx.append(np.array(ids + [eos_id] + PROMPT_IDS, dtype=np.int64)) return ctx def pad_batch(seqs): L = max(len(s) for s in seqs) out = np.full((len(seqs), L), pad_id, dtype=np.int64) for i, s in enumerate(seqs): out[i, :len(s)] = s return torch.from_numpy(out) def ids_to_tokens(ids): return [id2token.get(int(i), "") for i in ids] def to_canonical(pred_chunk: str): s = (pred_chunk or "").strip().lower() low = [L.lower() for L in HALLMARKS] if s in low: return HALLMARKS[low.index(s)] best = difflib.get_close_matches(s, low, n=1, cutoff=0.7) return HALLMARKS[low.index(best[0])] if best else None # ---------- Require your GPT & GPTConfig from pretraining ---------- assert 'GPT' in globals(), "Please define your GPT class (same as pretraining) before running this cell." assert 'GPTConfig' in globals(), "Please ensure GPTConfig is defined." cfg = GPTConfig( vocab_size=len(token2id), block_size=(config.block_size if 'config' in globals() else 128), n_layer=(config.n_layer if 'config' in globals() else 6), n_head=(config.n_head if 'config' in globals() else 6), n_embd=(config.n_embd if 'config' in globals() else 384), dropout=(config.dropout if 'config' in globals() else 0.1), bias=(config.bias if 'config' in globals() else True), ) base = GPT(cfg).to(device) # safe WPE resize when loading the checkpoint def load_with_wpe_resize(model, ckpt_path): sd = torch.load(ckpt_path, map_location="cpu") key = "transformer.wpe.weight" if key in sd: old = sd[key] new_w = model.transformer.wpe.weight new_len = new_w.shape[0] if old.shape[0] != new_len: new = new_w.data.clone() n = min(new_len, old.shape[0]) new[:n] = old[:n] if new_len > n: torch.nn.init.normal_(new[n:], mean=0.0, std=0.02) sd[key] = new missing, unexpected = base.load_state_dict(sd, strict=False) if missing or unexpected: print("Missing keys:", missing) print("Loaded PRETRAINED checkpoint:", ckpt_path) assert os.path.exists(ckpt_path), f"Checkpoint not found: {ckpt_path}" load_with_wpe_resize(base, ckpt_path) base.eval() # ---------- Constrained greedy decode with cue + EOS delay ---------- @torch.no_grad() def gpt_generate_with_cue(model, idx, allowed_mask, first_step_forbid, max_new_tokens=24, min_new_before_eos=2, eos_penalty=-2.0, temperature=0.0): """ - Restrict vocabulary with `allowed_mask` - For the very first generated token, forbid separators + EOS - For the first `min_new_before_eos` tokens, disallow EOS entirely - After that, add a small penalty to EOS (so it doesn't end too early) """ out = idx.clone() B = out.size(0) finished = torch.zeros(B, dtype=torch.bool, device=out.device) steps = 0 for _ in range(max_new_tokens): ctx = out[:, -model.config.block_size:] logits, _ = model(ctx) # (B,1,V) logits = logits[:, -1, :] # (B,V) # restrict to label vocab logits = logits + allowed_mask # first token: block separators + EOS if steps == 0: logits[:, first_step_forbid] = -1e9 # delay EOS for a couple steps, then mildly penalize if steps < min_new_before_eos: logits[:, eos_id] = -1e9 else: logits[:, eos_id] += eos_penalty # pick next if temperature <= 0: next_id = torch.argmax(logits, dim=-1) else: probs = F.softmax(logits / temperature, dim=-1) next_id = torch.multinomial(probs, num_samples=1).squeeze(1) next_id = next_id.masked_fill(finished, eos_id) out = torch.cat([out, next_id.unsqueeze(1)], dim=1) finished |= (next_id == eos_id) steps += 1 if bool(finished.all()): break return out[:, idx.size(1):] @torch.no_grad() def predict_labels_for_batch_generative(xb): gens = gpt_generate_with_cue( base, xb, allowed_mask=ALLOWED_MASK, first_step_forbid=FIRST_STEP_FORBID, max_new_tokens=24, min_new_before_eos=2, eos_penalty=-2.0, temperature=0.0 ) preds = [] for g in gens: toks = ids_to_tokens(g.detach().cpu().numpy()) toks = toks[: toks.index("")] if "" in toks else toks label_str = bpe_decode_tokens(toks).strip().lower() parts = [] for sep in [",",";","|"]: if sep in label_str: parts = [p.strip() for p in label_str.split(sep) if p.strip()] break if not parts: parts = [label_str] if label_str else [] mapped = [] for p in parts: can = to_canonical(p) if can and can not in mapped: mapped.append(can) preds.append(mapped) # may be [] return preds # ---------- Run decoding on TEST ---------- ctx_test = make_context_with_prompt(test_df) preds_all = [] B = 32 for i in tqdm(range(0, len(ctx_test), B), desc="Decoding (pretrain+cue, test)"): xb = pad_batch(ctx_test[i:i+B]).to(device) preds_all.extend(predict_labels_for_batch_generative(xb)) # ---------- Ground truth & metrics (10 hallmarks only) ---------- y_true = [ normalize_labels(split_labels(s)) for s in test_df["label"].astype(str).tolist() ] LABELS = HALLMARKS LIDX = {l:i for i,l in enumerate(LABELS)} def binarize(labs): v = [0]*len(LABELS) for l in labs: if l in LIDX: v[LIDX[l]] = 1 return v Y_true = np.array([binarize(l) for l in y_true], dtype=np.int64) Y_pred = np.array([binarize(l) for l in preds_all], dtype=np.int64) micro_p, micro_r, micro_f1, _ = precision_recall_fscore_support(Y_true, Y_pred, average='micro', zero_division=0) macro_p, macro_r, macro_f1, _ = precision_recall_fscore_support(Y_true, Y_pred, average='macro', zero_division=0) print(f"\n[PRETRAIN+cue] HALLMARKS-ONLY Micro P/R/F1: {micro_p:.4f} / {micro_r:.4f} / {micro_f1:.4f}") print( f"[PRETRAIN+cue] HALLMARKS-ONLY Macro P/R/F1: {macro_p:.4f} / {macro_r:.4f} / {macro_f1:.4f}") perclass = precision_recall_fscore_support(Y_true, Y_pred, average=None, zero_division=0) per_df_pre = pd.DataFrame({ "label": LABELS, "precision": perclass[0], "recall": perclass[1], "f1": perclass[2], "support": perclass[3], }).sort_values("label") print("\nPer-class results (PRETRAIN+cue, 10 hallmarks):") print(per_df_pre.to_string(index=False)) per_df_pre.to_csv("hoc_test_results_pretrain_cue.csv", index=False) print("Saved: hoc_test_results_pretrain_cue.csv") # (optional) exclude empty-label rows from eval: # mask = (Y_true.sum(axis=1) > 0) # ... recompute scores on Y_true[mask], Y_pred[mask] """### 1.15 Evaluation on HoC Part 2 (the Hallmarks of Cancers corpus) classification dataset""" # === Show 10 "questions" (abstract + prompt) and the model's answers (pretrained+cue) === import os, difflib, numpy as np, pandas as pd, torch, torch.nn.functional as F from tqdm.auto import tqdm from sklearn.metrics import precision_recall_fscore_support # ---- Assumptions / fallbacks ---- HOC_DIR = globals().get("HOC_DIR", "/content/hoc") ckpt_path = globals().get("ckpt_path", "best_model_params.pt") device = "cuda" if torch.cuda.is_available() else "cpu" # Hallmarks (10 classes, no "empty") HALLMARKS = [ "activating invasion and metastasis", "avoiding immune destruction", "cellular energetics", "enabling replicative immortality", "evading growth suppressors", "genomic instability and mutation", "inducing angiogenesis", "resisting cell death", "sustaining proliferative signaling", "tumor promoting inflammation", ] # ---------- Helper fallbacks if not defined earlier ---------- def _need(name): return name not in globals() # TSV loader if _need("load_hoc_tsv"): def load_hoc_tsv(path): df = pd.read_csv(path, sep="\t", header=None, dtype=str).fillna("") assert df.shape[1] == 2, f"{path} must have 2 columns" avg0, avg1 = df[0].astype(str).str.len().mean(), df[1].astype(str).str.len().mean() df.columns = ["text","label"] if avg0 > avg1 else ["label","text"] return df # If test_df not in memory, load it if "test_df" not in globals(): test_df = load_hoc_tsv(os.path.join(HOC_DIR, "test.tsv")) # Simple label split/normalization utilities def split_labels(s: str): s = (s or "").strip() if not s: return [] for sep in [",",";","|"]: if sep in s: return [p.strip() for p in s.split(sep) if p.strip()] return [s] def normalize_labels(labs): keep, low = [], [L.lower() for L in HALLMARKS] for x in labs: xl = x.lower().strip() if xl in low: keep.append(HALLMARKS[low.index(xl)]) else: best = difflib.get_close_matches(xl, low, n=1, cutoff=0.7) if best: keep.append(HALLMARKS[low.index(best[0])]) # de-dup & stable order seen, out = set(), [] for k in keep: if k not in seen: seen.add(k); out.append(k) return out # BPE helpers (must exist: token2id, id2token, bpe_encode_lines, tokens_to_ids, bpe_decode_tokens, eos_id, pad_id) for req in ["token2id","id2token","bpe_encode_lines","tokens_to_ids","bpe_decode_tokens","eos_id","pad_id"]: assert req in globals(), f"Missing `{req}` — run the setup cell that defines dict/bpecodes and BPE helpers." # Build allowed-token mask & first-step forbids if not present if _need("ALLOWED_MASK") or _need("FIRST_STEP_FORBID"): def build_allowed_mask_and_first_forbid(vocab_size, device): allowed = set(); sep_ids = set() # all tokens that appear in hallmark strings for bpe in bpe_encode_lines(HALLMARKS, desc="BPE hallmarks"): ids, _ = tokens_to_ids(bpe); allowed.update(ids) # separators (also block them on very first generated step) SEPS = [", ", ",", "; ", ";", "|", " and "] for sep in SEPS: bpe = bpe_encode_lines([sep], desc="BPE seps")[0] ids, _ = tokens_to_ids(bpe); allowed.update(ids); sep_ids.update(ids) allowed.add(eos_id) mask = torch.full((vocab_size,), float('-inf'), device=device) mask[list(allowed)] = 0.0 first_forbid = torch.zeros((vocab_size,), dtype=torch.bool, device=device) first_forbid[list(sep_ids)] = True first_forbid[eos_id] = True return mask, first_forbid ALLOWED_MASK, FIRST_STEP_FORBID = build_allowed_mask_and_first_forbid(len(token2id), device) # Prompt (the "question" cue) PROMPT_TEXT = " hallmarks of cancer:" PROMPT_BPE = bpe_encode_lines([PROMPT_TEXT], desc="BPE prompt")[0] PROMPT_IDS, _ = tokens_to_ids(PROMPT_BPE) # Build contexts with prompt def make_context_with_prompt(rows): bpes = bpe_encode_lines(rows["text"].astype(str).tolist(), desc="BPE ctx (sample)") ctx = [] for bpe in bpes: ids, _ = tokens_to_ids(bpe) ctx.append(np.array(ids + [eos_id] + PROMPT_IDS, dtype=np.int64)) return ctx def pad_batch(seqs): L = max(len(s) for s in seqs) out = np.full((len(seqs), L), pad_id, dtype=np.int64) for i, s in enumerate(seqs): out[i, :len(s)] = s return torch.from_numpy(out) def ids_to_tokens(ids): return [id2token.get(int(i), "") for i in ids] def to_canonical(pred_chunk: str): s = (pred_chunk or "").strip().lower() low = [L.lower() for L in HALLMARKS] if s in low: return HALLMARKS[low.index(s)] best = difflib.get_close_matches(s, low, n=1, cutoff=0.7) return HALLMARKS[low.index(best[0])] if best else None # If the pretrained model (`base`) isn’t loaded yet, load it if _need("base"): assert 'GPT' in globals() and 'GPTConfig' in globals(), "Define GPT and GPTConfig first (your pretraining classes)." assert os.path.exists(ckpt_path), f"Checkpoint not found: {ckpt_path}" cfg = GPTConfig( vocab_size=len(token2id), block_size=(config.block_size if 'config' in globals() else 128), n_layer=(config.n_layer if 'config' in globals() else 6), n_head=(config.n_head if 'config' in globals() else 6), n_embd=(config.n_embd if 'config' in globals() else 384), dropout=(config.dropout if 'config' in globals() else 0.1), bias=(config.bias if 'config' in globals() else True), ) base = GPT(cfg).to(device) # safe WPE resize def load_with_wpe_resize(model, path): sd = torch.load(path, map_location="cpu") key = "transformer.wpe.weight" if key in sd: old = sd[key] new_w = model.transformer.wpe.weight new_len = new_w.shape[0] if old.shape[0] != new_len: new = new_w.data.clone() n = min(new_len, old.shape[0]) new[:n] = old[:n] if new_len > n: torch.nn.init.normal_(new[n:], mean=0.0, std=0.02) sd[key] = new model.load_state_dict(sd, strict=False) load_with_wpe_resize(base, ckpt_path) base.eval() # Constrained generation with cue + EOS delay (define if missing) if _need("gpt_generate_with_cue"): @torch.no_grad() def gpt_generate_with_cue(model, idx, allowed_mask, first_step_forbid, max_new_tokens=24, min_new_before_eos=2, eos_penalty=-2.0, temperature=0.0): out = idx.clone() B = out.size(0) finished = torch.zeros(B, dtype=torch.bool, device=out.device) steps = 0 for _ in range(max_new_tokens): ctx = out[:, -model.config.block_size:] logits, _ = model(ctx) # (B,1,V) logits = logits[:, -1, :] # (B,V) logits = logits + allowed_mask # restrict vocab if steps == 0: logits[:, first_step_forbid] = -1e9 if steps < min_new_before_eos: logits[:, eos_id] = -1e9 else: logits[:, eos_id] += eos_penalty if temperature <= 0: next_id = torch.argmax(logits, dim=-1) else: probs = F.softmax(logits / temperature, dim=-1) next_id = torch.multinomial(probs, num_samples=1).squeeze(1) next_id = next_id.masked_fill(finished, eos_id) out = torch.cat([out, next_id.unsqueeze(1)], dim=1) finished |= (next_id == eos_id) steps += 1 if bool(finished.all()): break return out[:, idx.size(1):] # ---------- Sample 10 and print Q&A ---------- SAMPLE_N = 10 sample = test_df.sample(n=min(SAMPLE_N, len(test_df)), random_state=42).reset_index(drop=True) # prepare contexts ctx = make_context_with_prompt(sample) B = 10 # single batch is fine here xb = pad_batch(ctx).to(device) # generate gens = gpt_generate_with_cue( base, xb, allowed_mask=ALLOWED_MASK, first_step_forbid=FIRST_STEP_FORBID, max_new_tokens=24, min_new_before_eos=2, eos_penalty=-2.0, temperature=0.0 ) # decode + print for i, g in enumerate(gens): text = sample.loc[i, "text"] gold = normalize_labels(split_labels(sample.loc[i, "label"])) toks = ids_to_tokens(g.detach().cpu().numpy()) toks = toks[: toks.index("")] if "" in toks else toks raw = ' '.join(toks).replace('@@ ', '').strip().lower() # split raw into parts and map to canonical labels parts = [] for sep in [",",";","|"]: if sep in raw: parts = [p.strip() for p in raw.split(sep) if p.strip()] break if not parts: parts = [raw] if raw else [] pred = [] for p in parts: can = to_canonical(p) if can and can not in pred: pred.append(can) print(f"\n=== Example {i+1} ===") print("QUESTION:") print("Abstract:", (text.replace("\n"," ")[:350] + ("..." if len(text) > 350 else ""))) print("Prompt: hallmarks of cancer:") print("GOLD: ", gold if gold else "[]") print("ANSWER: ", pred if pred else "[]") print("Raw gen:", raw if raw else "") """## Part 2: Finetuning ### 2.1 Setup: paths + installs """ # Commented out IPython magic to ensure Python compatibility. # --- Setup: paths + installs (run once) --- !pip -q install sacremoses==0.0.53 scikit-learn==1.5.1 import os, subprocess, json, math, random, difflib, tempfile, shutil from pathlib import Path import numpy as np import pandas as pd from collections import Counter, defaultdict import torch, torch.nn as nn, torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from torch.optim.lr_scheduler import LinearLR, SequentialLR, CosineAnnealingLR from sacremoses import MosesDetokenizer from tqdm.auto import tqdm # <-- used in BPE w/ progress # ---- paths ---- HOC_DIR = "/content/hoc" # << put your train/valid/test.tsv here BPE_CODES = "/content/bpecodes" # from your pre-training cell DICT_TXT = "/content/dict.txt" # from your pre-training cell FASTBPE = "/content/fastBPE/fast" # compiled earlier in your notebook os.makedirs(HOC_DIR, exist_ok=True) # Ensure fastBPE exists (rebuild if needed) if not os.path.exists(FASTBPE): !git clone -q https://github.com/glample/fastBPE.git /content/fastBPE # %cd /content/fastBPE !g++ -std=c++11 -O3 -pthread fastBPE/main.cc -IfastBPE -o fast # %cd /content # ---- load BioGPT dictionary ---- token2id = {} id2token = {} with open(DICT_TXT, encoding="utf-8") as f: for i, line in enumerate(f): tok = line.split()[0] token2id[tok] = i id2token[i] = tok # pick special ids eos_id = token2id.get("", 0) pad_id = eos_id # safe padding with eos for inputs; we mask loss anyway # ---- BPE encode/decode helpers (fastBPE uses '@@' continuation) ---- def bpe_encode_lines(lines, shard_size=2000, desc="BPE"): """ Progress-enabled BPE encoding using fastBPE, processing in shards. Returns: list[list[str]] (BPE tokens per line) """ if len(lines) == 0: return [] out_tokens = [] with tempfile.TemporaryDirectory() as td: for start in tqdm(range(0, len(lines), shard_size), desc=f"{desc} ({len(lines)} lines)", leave=False): chunk = lines[start:start+shard_size] src = os.path.join(td, f"src_{start}.txt") dst = os.path.join(td, f"dst_{start}.bpe") with open(src, "w", encoding="utf-8") as f: for s in chunk: f.write((s or "").strip() + "\n") subprocess.check_call([FASTBPE, "applybpe", dst, src, BPE_CODES]) with open(dst, "r", encoding="utf-8") as f: for line in f: out_tokens.append(line.strip().split()) return out_tokens def bpe_decode_tokens(bpe_tokens): """Merge '@@' continuations and detokenize to plain text (for label decoding).""" s = ' '.join(bpe_tokens).replace('@@ ', '') md = MosesDetokenizer(lang='en') return md.detokenize(s.split()) def tokens_to_ids(bpe_tokens): ids = [] oov = 0 for t in bpe_tokens: if t in token2id: ids.append(token2id[t]) else: ids.append(pad_id) # unlikely, but safe fallback oov += 1 return ids, oov """### 2.2 Load HoC dataset and map targets to labels""" # --- Load HoC TSVs (2 columns, no header). Heuristically figure out which is text vs label. --- def load_hoc_tsv(path): df = pd.read_csv(path, sep="\t", header=None, dtype=str).fillna("") assert df.shape[1] == 2, f"Expected 2 columns in {path}, got {df.shape}" avg0, avg1 = df[0].astype(str).str.len().mean(), df[1].astype(str).str.len().mean() if avg0 > avg1: df.columns = ["text", "label"] else: df.columns = ["label", "text"] return df train_df = load_hoc_tsv(f"{HOC_DIR}/train.tsv") valid_df = load_hoc_tsv(f"{HOC_DIR}/valid.tsv") test_df = load_hoc_tsv(f"{HOC_DIR}/test.tsv") print("Splits:", len(train_df), len(valid_df), len(test_df)) # --- Hallmarks (10 classes; we ignore 'empty' for training and for reporting) --- HALLMARKS = [ "activating invasion and metastasis", "avoiding immune destruction", "cellular energetics", "enabling replicative immortality", "evading growth suppressors", "genomic instability and mutation", "inducing angiogenesis", "resisting cell death", "sustaining proliferative signaling", "tumor promoting inflammation", ] def split_labels(s: str): s = (s or "").strip() if not s: return [] for sep in [",", ";", "|"]: if sep in s: return [p.strip() for p in s.split(sep) if p.strip()] return [s] def normalize_labels(labs): """Map raw labels (including fuzzy matches) to the 10 hallmarks; drop 'empty'.""" keep = [] low = [L.lower() for L in HALLMARKS] for x in labs: x_low = x.lower().strip() if x_low in low: keep.append(HALLMARKS[low.index(x_low)]) else: best = difflib.get_close_matches(x_low, low, n=1, cutoff=0.7) if best: keep.append(HALLMARKS[low.index(best[0])]) # dedupe & sort for deterministic target text return sorted(list(dict.fromkeys(keep))) def labels_to_target_text(labs): labs = normalize_labels(labs) if len(labs) == 0: return None # -> drop from training if empty-only return ", ".join(labs) """### 2.3 Redefine GPT architecture for full finetuning""" # --- Your GPT modules (same as in your pretraining code) --- class LayerNorm(nn.Module): def __init__(self, ndim, bias): super().__init__() self.weight = nn.Parameter(torch.ones(ndim)) self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None def forward(self, x): return F.layer_norm(x, self.weight.shape, self.weight, self.bias, 1e-5) class CausalSelfAttention(nn.Module): def __init__(self, config): super().__init__() assert config.n_embd % config.n_head == 0 self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) self.attn_dropout = nn.Dropout(config.dropout) self.resid_dropout = nn.Dropout(config.dropout) self.n_head = config.n_head self.n_embd = config.n_embd self.flash = hasattr(F, 'scaled_dot_product_attention') if not self.flash: self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)) .view(1, 1, config.block_size, config.block_size)) def forward(self, x): B, T, C = x.size() q, k, v = self.c_attn(x).split(self.n_embd, dim=2) k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) if self.flash: y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.attn_dropout.p if self.training else 0.0, is_causal=True) else: att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf')) att = F.softmax(att, dim=-1) att = self.attn_dropout(att) y = att @ v y = y.transpose(1, 2).contiguous().view(B, T, C) y = self.resid_dropout(self.c_proj(y)) return y class MLP(nn.Module): def __init__(self, config): super().__init__() self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias) self.gelu = nn.GELU() self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias) self.dropout = nn.Dropout(config.dropout) def forward(self, x): return self.dropout(self.c_proj(self.gelu(self.c_fc(x)))) class Block(nn.Module): def __init__(self, config): super().__init__() self.ln1 = LayerNorm(config.n_embd, config.bias) self.attn = CausalSelfAttention(config) self.ln2 = LayerNorm(config.n_embd, config.bias) self.mlp = MLP(config) def forward(self, x): x = x + self.attn(self.ln1(x)) x = x + self.mlp(self.ln2(x)) return x from dataclasses import dataclass @dataclass class GPTConfig: block_size: int vocab_size: int n_layer: int n_head: int n_embd: int dropout: float = 0.0 bias: bool = True class GPT(nn.Module): def __init__(self, config): super().__init__() self.config = config self.transformer = nn.ModuleDict(dict( wte=nn.Embedding(config.vocab_size, config.n_embd), wpe=nn.Embedding(config.block_size, config.n_embd), drop=nn.Dropout(config.dropout), h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]), ln_f=LayerNorm(config.n_embd, config.bias), )) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) # weight tying self.transformer.wte.weight = self.lm_head.weight self.apply(self._init_weights) for pn, p in self.named_parameters(): if pn.endswith('c_proj.weight'): nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * config.n_layer)) def _init_weights(self, module): if isinstance(module, nn.Linear): nn.init.normal_(module.weight, mean=0.0, std=0.02) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): nn.init.normal_(module.weight, mean=0.0, std=0.02) def forward(self, idx, targets=None): device = idx.device B, T = idx.size() assert T <= self.config.block_size pos = torch.arange(0, T, dtype=torch.long, device=device) tok_emb = self.transformer.wte(idx) pos_emb = self.transformer.wpe(pos) x = self.transformer.drop(tok_emb + pos_emb) for block in self.transformer.h: x = block(x) x = self.transformer.ln_f(x) if targets is not None: logits = self.lm_head(x) # (B,T,V) loss = F.cross_entropy( logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1 ) return logits, loss else: logits = self.lm_head(x[:, [-1], :]) # (B,1,V) return logits, None """### 2.4 Define Add SoftPrompt embeddings to input embeddings""" class GPTWithSoftPrompt(nn.Module): def __init__(self, base_gpt: GPT, prompt_len=1): super().__init__() self.config = base_gpt.config self.transformer = base_gpt.transformer self.lm_head = base_gpt.lm_head C = self.config.n_embd self.soft_prompt = nn.Parameter(torch.zeros(1, prompt_len, C)) nn.init.normal_(self.soft_prompt, mean=0.0, std=0.02) def forward(self, idx, targets=None): B, T = idx.shape device = idx.device # token + pos tok_emb = self.transformer.wte(idx) # (B,T,C) pos = torch.arange(0, T, dtype=torch.long, device=device) pos_emb = self.transformer.wpe(pos) # (T,C) x_tokens = tok_emb + pos_emb # prepend soft prompt soft = self.soft_prompt.expand(B, -1, -1) # (B,P,C) x = torch.cat([soft, x_tokens], dim=1) # (B,P+T,C) x = self.transformer.drop(x) for block in self.transformer.h: x = block(x) x = self.transformer.ln_f(x) logits = self.lm_head(x) # (B,P+T,V) if targets is None: # return next-token logits at last (standard for generation) return logits[:, -1, :], None # ----- FIX: next-token loss with soft-prompt padding ----- P = soft.size(1) pad_ignore = torch.full((B, P), -1, dtype=targets.dtype, device=device) # ignore for soft prompt full_targets = torch.cat([pad_ignore, targets], dim=1) # (B,P+T) # shift for next-token prediction logits_lm = logits[:, :-1, :].contiguous() # predict next token targets_lm = full_targets[:, 1:].contiguous() loss = F.cross_entropy( logits_lm.view(-1, logits_lm.size(-1)), targets_lm.view(-1), ignore_index=-1 ) return logits, loss """### 2.5 Instantiate pre-training weights""" # --- Instantiate & (optionally) load your pretraining weights --- device = "cuda" if torch.cuda.is_available() else "cpu" # Use your pretrain block_size (128 in your earlier run). If different, the loader below can resize wpe. BLOCK_SIZE = 128 # set to 128 if that was your pretrain; otherwise set to your pretrain context length config = GPTConfig( vocab_size=len(token2id), block_size=BLOCK_SIZE, n_layer=6, n_head=6, n_embd=384, dropout=0.1, bias=True ) base_gpt = GPT(config) def load_with_wpe_resize(model, ckpt_path): sd = torch.load(ckpt_path, map_location="cpu") key = "transformer.wpe.weight" if key in sd: old = sd[key] new_len = model.transformer.wpe.weight.shape[0] if old.shape[0] != new_len: # copy existing, init the rest new = model.transformer.wpe.weight.data.clone() n = min(new_len, old.shape[0]) new[:n] = old[:n] if new_len > n: nn.init.normal_(new[n:], mean=0.0, std=0.02) sd[key] = new missing, unexpected = model.load_state_dict(sd, strict=False) print("Loaded state dict with resize. Missing:", missing, "Unexpected:", unexpected) pt_path = "best_model_params.pt" if os.path.exists(pt_path): load_with_wpe_resize(base_gpt, pt_path) print("Loaded pretraining weights from:", pt_path) else: print("No pretrain checkpoint found; training soft prompt from scratch on top of random GPT.") model = GPTWithSoftPrompt(base_gpt, prompt_len=1).to(device) """### 2.6 Build a mask of token IDs that are allowed during generation""" # --- Constrained token mask (only hallmarks + separators + ) --- def build_allowed_token_mask(vocab_size, device): allowed = set() # hallmark token ids for bpe in bpe_encode_lines(HALLMARKS, desc="BPE hallmarks"): ids, _ = tokens_to_ids(bpe) allowed.update(ids) # separators for sep in [", ", ",", "; ", ";", "|", " and "]: bpe = bpe_encode_lines([sep], desc="BPE seps")[0] ids, _ = tokens_to_ids(bpe) allowed.update(ids) allowed.add(eos_id) mask = torch.full((vocab_size,), float('-inf'), device=device) mask[list(allowed)] = 0.0 return mask ALLOWED_MASK = build_allowed_token_mask(len(token2id), device) """### 2.7: - Define a dataset class that encodes abstracts and labels into token IDs (dropping empty-only rows for training if desired) - Concatenate them into input/target sequences respecting a block size - Provide a collate function to pad batches for training. """ # --- Dataset (drops empty-only rows for TRAIN to avoid collapse) --- class HoCGenDataset(Dataset): def __init__(self, df, block_size=256, drop_empty_only=False, name=""): self.block_size = block_size self.samples = [] texts = df["text"].astype(str).tolist() raw_labels = [split_labels(s) for s in df["label"].astype(str).tolist()] # BPE encode texts with progress text_bpe = bpe_encode_lines(texts, shard_size=2000, desc=f"BPE {name or 'dataset'}") # Pre-encode unique label targets targets = [] for labs in raw_labels: tgt = labels_to_target_text(labs) # None if empty-only targets.append(tgt) uniq_non_null = sorted(set([t for t in targets if t is not None])) label_cache = {} if len(uniq_non_null) > 0: encoded = bpe_encode_lines(uniq_non_null, shard_size=200, desc=f"BPE labels {name or 'dataset'}") for s, bpe in zip(uniq_non_null, encoded): ids, _ = tokens_to_ids(bpe) label_cache[s] = ids # Pack samples for bpe, tgt in tqdm(list(zip(text_bpe, targets)), total=len(text_bpe), desc=f"Packing {name or 'dataset'}", leave=False): if drop_empty_only and tgt is None: continue text_ids, _ = tokens_to_ids(bpe) if tgt is None: label_ids = [] else: label_ids = label_cache[tgt] x_ids = text_ids + [eos_id] y_ids = (label_ids + [eos_id]) if len(label_ids) > 0 else [] # respect block size max_text = self.block_size - (2 if len(y_ids) > 0 else 1) - len(y_ids) if max_text < 1: x_ids = x_ids[:max(1, self.block_size // 2)] else: x_ids = x_ids[:max_text] input_ids = x_ids + y_ids targets_arr = ([-1] * len(x_ids)) + (y_ids if len(y_ids) > 0 else []) self.samples.append(( np.array(input_ids, dtype=np.int64), np.array(targets_arr, dtype=np.int64) )) def __len__(self): return len(self.samples) def __getitem__(self, idx): return self.samples[idx] def collate(batch): L = max(len(x[0]) for x in batch) B = len(batch) inputs = np.full((B, L), pad_id, dtype=np.int64) targets = np.full((B, L), -1, dtype=np.int64) for i, (inp, tgt) in enumerate(batch): n = len(inp) inputs[i, :n] = inp targets[i, :n] = tgt return torch.from_numpy(inputs), torch.from_numpy(targets) """### 2.8 Create dataloaders for the finetuning dataset""" # --- Datasets/Loaders --- BATCH_SIZE = 16 # Train: drop empty-only rows (crucial) train_ds = HoCGenDataset(train_df, block_size=model.config.block_size, drop_empty_only=True, name="train") # Valid: drop empty-only too (makes val loss meaningful) valid_ds = HoCGenDataset(valid_df, block_size=model.config.block_size, drop_empty_only=True, name="valid") # Test: keep all rows; we'll evaluate on the 10 hallmarks only later test_ds = HoCGenDataset(test_df, block_size=model.config.block_size, drop_empty_only=False, name="test") cuda_gen = torch.Generator(device='cuda') # or set a manual seed if you want train_loader = DataLoader( train_ds, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate, drop_last=True, generator=cuda_gen, # <-- key fix pin_memory=True, pin_memory_device='cuda' ) valid_loader = DataLoader( valid_ds, batch_size=BATCH_SIZE, shuffle=False, collate_fn=collate, generator=cuda_gen, pin_memory=True, pin_memory_device='cuda' ) test_loader = DataLoader( test_ds, batch_size=BATCH_SIZE, shuffle=False, collate_fn=collate, generator=cuda_gen, pin_memory=True, pin_memory_device='cuda' ) print(f"Train samples (non-empty only): {len(train_ds)}") print(f"Valid samples (non-empty only): {len(valid_ds)}") print(f"Test samples (incl. empty): {len(test_ds)}") xb, yb = next(iter(train_loader)) assert (yb != -1).any(), "No supervised label tokens in this batch — are we dropping all rows?" xb, yb = xb.to(device), yb.to(device) with torch.no_grad(): _, loss = model(xb, yb) print("Initial loss:", float(loss)) """### 2.9 - Feeds the current context into the model (self(ctx)). - Adds the allowed_mask to the logits so that only permitted token IDs (Hallmarks, separators, ) can be chosen; all others get -inf and are impossible to sample. - Picks the next token greedily (argmax) unless a temperature is set, in which case it samples. - Forces already finished sequences to emit and stops early when all sequences are finished. """ # --- Constrained, batched decoding method for GPTWithSoftPrompt --- def constrained_generate_labels(self, idx, allowed_mask, max_new_tokens=24, temperature=0.0): """ Batched decode. At each step, mask logits to the allowed set. Returns only generated tail (B, Tgen). """ self.eval() B = idx.size(0) out = idx.clone() finished = torch.zeros(B, dtype=torch.bool, device=idx.device) for _ in range(max_new_tokens): ctx = out[:, -self.config.block_size:] logits, _ = self(ctx) # (B,V) # apply constraint logits = logits + allowed_mask if temperature <= 0: next_id = torch.argmax(logits, dim=-1) # (B,) else: probs = F.softmax(logits / temperature, dim=-1) next_id = torch.multinomial(probs, num_samples=1).squeeze(1) next_id = next_id.masked_fill(finished, eos_id) out = torch.cat([out, next_id.unsqueeze(1)], dim=1) finished |= (next_id == eos_id) if bool(finished.all()): break return out[:, idx.size(1):] # attach to instance/class GPTWithSoftPrompt.generate_labels = constrained_generate_labels """### 2.10 Run the finetuning loop""" # --- Optimizer & schedulers (paper: 20k steps, warmup 1k, peak LR 1e-5) --- max_steps = 20_000 warmup = 1_000 peak_lr = 1e-5 eta_min = 1e-6 optimizer = torch.optim.AdamW(model.parameters(), lr=peak_lr, betas=(0.9, 0.95), weight_decay=0.01, eps=1e-9) sched_warm = LinearLR(optimizer, total_iters=warmup) sched_decay = CosineAnnealingLR(optimizer, T_max=max_steps - warmup, eta_min=eta_min) scheduler = SequentialLR(optimizer, [sched_warm, sched_decay], milestones=[warmup]) # AMP dtype: bf16 if supported, else fp16; enable GradScaler only if fp16 amp_dtype = torch.bfloat16 if (torch.cuda.is_available() and torch.cuda.is_bf16_supported()) else torch.float16 scaler = torch.cuda.amp.GradScaler(enabled=(amp_dtype == torch.float16)) def run_eval(loader): model.eval() losses = [] with torch.no_grad(): for xb, yb in tqdm(loader, desc="Valid", leave=False): xb, yb = xb.to(device), yb.to(device) with torch.autocast(device_type="cuda", dtype=amp_dtype, enabled=torch.cuda.is_available()): _, loss = model(xb, yb) losses.append(loss.item()) model.train() return float(np.mean(losses)) if losses else 0.0 # --- Training loop --- EVAL_EVERY = 500 BEST_PATH = "hoc_best.pt" best_val = float('inf') global_step = 0 ema_loss = None pbar = tqdm(total=max_steps, desc="Finetuning (HoC)", leave=True) model.train() while global_step < max_steps: for xb, yb in train_loader: xb, yb = xb.to(device), yb.to(device) with torch.autocast(device_type="cuda", dtype=amp_dtype, enabled=torch.cuda.is_available()): _, loss = model(xb, yb) scaler.scale(loss).backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) scaler.step(optimizer) scaler.update() optimizer.zero_grad(set_to_none=True) scheduler.step() global_step += 1 pbar.update(1) cur = loss.item() ema_loss = cur if ema_loss is None else (0.95 * ema_loss + 0.05 * cur) pbar.set_postfix({ "train_loss": f"{cur:.3f}", "ema": f"{ema_loss:.3f}", "best_val": f"{best_val:.3f}" if best_val < float('inf') else "—", "lr": f"{optimizer.param_groups[0]['lr']:.2e}", }) if global_step % EVAL_EVERY == 0: val_loss = run_eval(valid_loader) if val_loss < best_val: best_val = val_loss torch.save(model.state_dict(), BEST_PATH) pbar.set_postfix({ "train_loss": f"{cur:.3f}", "ema": f"{ema_loss:.3f}", "best_val": f"{best_val:.3f}", "lr": f"{optimizer.param_groups[0]['lr']:.2e}", }) if global_step >= max_steps: break pbar.close() # reload best if os.path.exists(BEST_PATH): model.load_state_dict(torch.load(BEST_PATH, map_location=device)) print("Loaded best checkpoint:", BEST_PATH, " (val_loss:", f"{best_val:.4f}", ")") """### 2.11 Classification evaluation""" # --- Build context-only inputs (text ) directly from raw test_df --- def make_context_only(df): texts = df["text"].astype(str).tolist() bpes = bpe_encode_lines(texts, desc="BPE test ctx") ctx = [] for bpe in bpes: ids, _ = tokens_to_ids(bpe) ctx.append(np.array(ids + [eos_id], dtype=np.int64)) return ctx def pad_batch(seqs): L = max(len(s) for s in seqs) out = np.full((len(seqs), L), pad_id, dtype=np.int64) for i, s in enumerate(seqs): out[i, :len(s)] = s return torch.from_numpy(out) def ids_to_tokens(ids): return [id2token.get(int(i), "") for i in ids] def to_canonical(pred_chunk: str): s = (pred_chunk or "").strip().lower() low = [L.lower() for L in HALLMARKS] if s in low: return HALLMARKS[low.index(s)] best = difflib.get_close_matches(s, low, n=1, cutoff=0.7) return HALLMARKS[low.index(best[0])] if best else None def predict_labels_for_batch(xb): """xb: (B, T) context-only input ids (text ).""" with torch.no_grad(): gens = model.generate_labels(xb, allowed_mask=ALLOWED_MASK, max_new_tokens=24, temperature=0.0) preds = [] for g in gens: toks = ids_to_tokens(g.detach().cpu().numpy()) # cut at EOS toks = toks[: toks.index("")] if "" in toks else toks label_str = bpe_decode_tokens(toks).strip().lower() # split multi-label guesses parts = [] for sep in [",", ";", "|"]: if sep in label_str: parts = [p.strip() for p in label_str.split(sep) if p.strip()] break if not parts: parts = [label_str] if label_str else [] # map to canonical hallmarks (no default to 'empty') mapped = [] for p in parts: can = to_canonical(p) if can and can not in mapped: mapped.append(can) preds.append(mapped) # may be [] return preds # --- Run decoding on TEST --- model.eval() ctx_test = make_context_only(test_df) B = 32 preds_all = [] for i in tqdm(range(0, len(ctx_test), B), desc="Decoding (test)"): batch_ctx = pad_batch(ctx_test[i:i+B]).to(device) preds_all.extend(predict_labels_for_batch(batch_ctx)) # --- Build ground truth (hallmarks only) --- y_true = [ normalize_labels(split_labels(s)) for s in test_df["label"].astype(str).tolist() ] # --- Binarize and score (10 hallmarks only) --- from sklearn.metrics import precision_recall_fscore_support LABELS = HALLMARKS LIDX = {l:i for i,l in enumerate(LABELS)} def binarize(labs): v = [0]*len(LABELS) for l in labs: if l in LIDX: v[LIDX[l]] = 1 return v Y_true = np.array([binarize(labs) for labs in y_true], dtype=np.int64) Y_pred = np.array([binarize(labs) for labs in preds_all], dtype=np.int64) micro_p, micro_r, micro_f1, _ = precision_recall_fscore_support(Y_true, Y_pred, average='micro', zero_division=0) macro_p, macro_r, macro_f1, _ = precision_recall_fscore_support(Y_true, Y_pred, average='macro', zero_division=0) print(f"\nHALLMARKS-ONLY Micro P/R/F1: {micro_p:.4f} / {micro_r:.4f} / {micro_f1:.4f}") print( f"HALLMARKS-ONLY Macro P/R/F1: {macro_p:.4f} / {macro_r:.4f} / {macro_f1:.4f}") perclass = precision_recall_fscore_support(Y_true, Y_pred, average=None, zero_division=0) per_df = pd.DataFrame({ "label": LABELS, "precision": perclass[0], "recall": perclass[1], "f1": perclass[2], "support": perclass[3], }).sort_values("label") print("\nPer-class results (10 hallmarks):") print(per_df.to_string(index=False)) per_df.to_csv("hoc_test_results_per_class.csv", index=False) print("Saved: hoc_test_results_per_class.csv")