Spaces:
Sleeping
Sleeping
File size: 1,120 Bytes
2442d7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# Load model
model_name = "textattack/bert-base-uncased-SST-2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
def analyze_sentiment(text):
inputs = tokenizer(text, return_tensors="pt",
truncation=True, padding=True)
with torch.no_grad():
outputs = model(**inputs)
probs = torch.softmax(outputs.logits, dim=1)
return {
"POSITIVE": float(probs[0][1]),
"NEGATIVE": float(probs[0][0])
}
# Create interface
demo = gr.Interface(
fn=analyze_sentiment,
inputs=gr.Textbox(label="Input text", placeholder="Enter text here..."),
outputs=gr.Label(label="Sentiment Probabilities"),
examples=[
["I love this product!"],
["This was terrible experience"],
["It was okay, nothing special"]
],
title="BERT Sentiment Analysis",
description="Predicts sentiment using BERT model fine-tuned on SST-2 dataset"
)
demo.launch()
|