Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,29 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import requests
|
| 5 |
-
import inspect
|
| 6 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# (Keep Constants as is)
|
| 9 |
# --- Constants ---
|
|
@@ -13,18 +33,557 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
| 13 |
|
| 14 |
# --- Final Agent Definition ---
|
| 15 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
|
|
|
| 23 |
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
| 30 |
"""
|
|
@@ -47,13 +606,12 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 47 |
|
| 48 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 49 |
try:
|
| 50 |
-
agent =
|
| 51 |
except Exception as e:
|
| 52 |
print(f"Error instantiating agent: {e}")
|
| 53 |
return f"Error initializing agent: {e}", None
|
| 54 |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
| 55 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 56 |
-
print(agent_code)
|
| 57 |
|
| 58 |
# 2. Fetch Questions
|
| 59 |
print(f"Fetching questions from: {questions_url}")
|
|
@@ -80,30 +638,56 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 80 |
results_log = []
|
| 81 |
answers_payload = []
|
| 82 |
print(f"Running agent on {len(questions_data)} questions...")
|
|
|
|
| 83 |
|
|
|
|
| 84 |
for item in questions_data:
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
"""
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
|
|
|
| 92 |
print(f"Skipping item with missing task_id or question: {item}")
|
| 93 |
continue
|
| 94 |
try:
|
| 95 |
-
submitted_answer = agent(
|
|
|
|
| 96 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 97 |
-
results_log.append({"Task ID": task_id, "Question":
|
| 98 |
except Exception as e:
|
| 99 |
print(f"Error running agent on task {task_id}: {e}")
|
| 100 |
-
results_log.append({"Task ID": task_id, "Question":
|
| 101 |
-
|
|
|
|
|
|
|
| 102 |
|
| 103 |
if not answers_payload:
|
| 104 |
print("Agent did not produce any answers to submit.")
|
| 105 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 106 |
-
|
| 107 |
# 4. Prepare Submission
|
| 108 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
| 109 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
|
@@ -151,7 +735,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 151 |
print(status_message)
|
| 152 |
results_df = pd.DataFrame(results_log)
|
| 153 |
return status_message, results_df
|
| 154 |
-
|
| 155 |
|
| 156 |
# --- Build Gradio Interface using Blocks ---
|
| 157 |
with gr.Blocks() as demo:
|
|
@@ -185,6 +769,7 @@ with gr.Blocks() as demo:
|
|
| 185 |
)
|
| 186 |
|
| 187 |
if __name__ == "__main__":
|
|
|
|
| 188 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
| 189 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
| 190 |
space_host_startup = os.getenv("SPACE_HOST")
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
+
import base64
|
| 4 |
+
import ffmpeg, cv2, numpy as np, tempfile, io, base64, os, pathlib
|
| 5 |
+
import openai
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
from typing import List, TypedDict, Dict, Any
|
| 8 |
+
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
| 9 |
+
from pytube import YouTube
|
| 10 |
+
from langchain.tools import tool
|
| 11 |
+
from langchain_community.utilities import WikipediaAPIWrapper
|
| 12 |
+
from langchain.agents import OpenAIFunctionsAgent, AgentExecutor
|
| 13 |
+
from langchain_openai import ChatOpenAI
|
| 14 |
+
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
| 15 |
+
from langgraph.graph import START, StateGraph, END
|
| 16 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 17 |
+
import PIL.Image as Image
|
| 18 |
+
import subprocess
|
| 19 |
+
import requests, os, tempfile, shutil
|
| 20 |
import requests
|
|
|
|
| 21 |
import pandas as pd
|
| 22 |
+
import time
|
| 23 |
+
|
| 24 |
+
os.environ["OPENAI_API_KEY"] = "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"
|
| 25 |
+
os.environ['TAVILY_API_KEY'] = "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"
|
| 26 |
+
openai.api_key = "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"
|
| 27 |
|
| 28 |
# (Keep Constants as is)
|
| 29 |
# --- Constants ---
|
|
|
|
| 33 |
|
| 34 |
# --- Final Agent Definition ---
|
| 35 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
| 36 |
+
|
| 37 |
+
general_llm = ChatOpenAI(model="gpt-4o-mini")
|
| 38 |
+
audio_llm = "whisper-1"
|
| 39 |
+
|
| 40 |
+
class AgentState(TypedDict, total=False):
|
| 41 |
+
file_path: str | None # Contains file path
|
| 42 |
+
question: str # Contains tabular file path (CSV)
|
| 43 |
+
answer: str | None
|
| 44 |
+
agent_type: str | None
|
| 45 |
+
messages: list[AIMessage | HumanMessage | SystemMessage]
|
| 46 |
+
|
| 47 |
+
@tool
|
| 48 |
+
def addition_tool(list: List[float]) -> float:
|
| 49 |
+
"""
|
| 50 |
+
Description:
|
| 51 |
+
A simple addition tool that takes a list of numbers and returns their sum.
|
| 52 |
+
|
| 53 |
+
Arguments:
|
| 54 |
+
• list (List[float]): List of numbers to add.
|
| 55 |
+
|
| 56 |
+
Return:
|
| 57 |
+
float – The sum of the numbers in the list.
|
| 58 |
+
"""
|
| 59 |
+
|
| 60 |
+
return sum(list)
|
| 61 |
+
|
| 62 |
+
@tool
|
| 63 |
+
def xlsx_handler(filepath: str) -> List[Dict[str, Any]]:
|
| 64 |
+
"""
|
| 65 |
+
Description:
|
| 66 |
+
Load the first sheet of an Excel workbook and convert it into
|
| 67 |
+
a JSON-serialisable list of row dictionaries (records).
|
| 68 |
+
|
| 69 |
+
Arguments:
|
| 70 |
+
• filepath (str): Absolute or relative path to the .xlsx file.
|
| 71 |
+
|
| 72 |
+
Return:
|
| 73 |
+
str – A list of dictionaries representing the column names and their values.
|
| 74 |
+
"""
|
| 75 |
+
# Load the Excel file
|
| 76 |
+
df = pd.read_excel(filepath)
|
| 77 |
+
|
| 78 |
+
columns = df.columns.tolist()
|
| 79 |
+
|
| 80 |
+
result = []
|
| 81 |
+
for col in columns:
|
| 82 |
+
result.append({"column": col, "values": df[col].tolist()})
|
| 83 |
+
# Convert to list of dictionaries (records)
|
| 84 |
+
#data = df.to_dict(orient="records")
|
| 85 |
+
|
| 86 |
+
# Convert to JSON string (pretty-printed)
|
| 87 |
+
#return json.dumps(data, indent=4)
|
| 88 |
+
return result
|
| 89 |
+
|
| 90 |
+
@tool
|
| 91 |
+
def python_handler(filepath: str) -> str:
|
| 92 |
+
"""
|
| 93 |
+
Description:
|
| 94 |
+
Execute a stand-alone Python script in a sandboxed subprocess and
|
| 95 |
+
capture anything the script prints to stdout. Stderr is returned
|
| 96 |
+
instead if the script exits with a non-zero status.
|
| 97 |
+
|
| 98 |
+
Arguments:
|
| 99 |
+
• filepath (str): Path to the .py file to run.
|
| 100 |
+
|
| 101 |
+
Return:
|
| 102 |
+
str – The final output of the .py file.
|
| 103 |
+
"""
|
| 104 |
+
try:
|
| 105 |
+
result = subprocess.run(
|
| 106 |
+
["python", filepath],
|
| 107 |
+
capture_output=True,
|
| 108 |
+
text=True,
|
| 109 |
+
timeout=10 # Safety
|
| 110 |
+
)
|
| 111 |
+
return result.stdout.strip() if result.returncode == 0 else result.stderr
|
| 112 |
+
except Exception as e:
|
| 113 |
+
return f"Execution failed: {str(e)}"
|
| 114 |
+
|
| 115 |
+
@tool
|
| 116 |
+
def video_decomposition(url: str, task: str) -> str:
|
| 117 |
+
"""
|
| 118 |
+
Description:
|
| 119 |
+
Download a YouTube video, extract ≤ 10 visually distinct key frames
|
| 120 |
+
and a Whisper transcript, feed them plus the user’s task to a
|
| 121 |
+
vision-capable LLM, and return the model’s answer.
|
| 122 |
+
|
| 123 |
+
Arguments:
|
| 124 |
+
• url (str) : Full YouTube link.
|
| 125 |
+
• task (str) : The question the model should answer about the clip.
|
| 126 |
+
|
| 127 |
+
Return:
|
| 128 |
+
str – The final response to the user question derived from both audio and visuals.
|
| 129 |
+
"""
|
| 130 |
+
|
| 131 |
+
with tempfile.TemporaryDirectory() as tmp:
|
| 132 |
+
tmp_dir = pathlib.Path(tmp)
|
| 133 |
+
|
| 134 |
+
# 1) Fetch clip
|
| 135 |
+
vid_path = download_youtube(url, tmp_dir)
|
| 136 |
+
|
| 137 |
+
# 2) Key-frame extraction
|
| 138 |
+
frames = key_frames_retrieval(vid_path)
|
| 139 |
+
|
| 140 |
+
# 3) Audio extraction
|
| 141 |
+
transcript = audio_retrieval(vid_path)
|
| 142 |
+
|
| 143 |
+
system_msg = SystemMessage(
|
| 144 |
+
content=("You are a Vision AI assistant that can process videos and answer correctly the user's questions"
|
| 145 |
+
"You are provided with key video frames, an audio transcript and a task related with those"
|
| 146 |
+
"Read the task **carefully**, examine all the video frames and the audio transcript and your final response **MUST** be only the final answer to the task's question"
|
| 147 |
+
"The content and format of your final respose is dictated by the task and only that")
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
# 4) Build multimodal prompt
|
| 151 |
+
parts = [
|
| 152 |
+
{
|
| 153 |
+
"type": "text",
|
| 154 |
+
"Task": (f"{task}")
|
| 155 |
+
},
|
| 156 |
+
{
|
| 157 |
+
"type": "text",
|
| 158 |
+
"Transcript": (f"{transcript[:4000]}")
|
| 159 |
+
}
|
| 160 |
+
]
|
| 161 |
+
for im in frames:
|
| 162 |
+
parts.extend(
|
| 163 |
+
{
|
| 164 |
+
"type": "image_url",
|
| 165 |
+
"image_url": {"url": img_to_data(im)},
|
| 166 |
+
}
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
messages = [
|
| 170 |
+
system_msg,
|
| 171 |
+
HumanMessage(
|
| 172 |
+
content=parts
|
| 173 |
+
)
|
| 174 |
+
]
|
| 175 |
+
|
| 176 |
+
response = general_llm.invoke(messages)
|
| 177 |
+
|
| 178 |
+
return response
|
| 179 |
+
|
| 180 |
+
@tool
|
| 181 |
+
def reverse_string(text: str) -> str:
|
| 182 |
+
"""
|
| 183 |
+
Description:
|
| 184 |
+
Reverse the order of words *and* the letters inside each word.
|
| 185 |
+
Converts a fully reversed sentence back to readable form.
|
| 186 |
+
|
| 187 |
+
Arguments:
|
| 188 |
+
• text (str): Original sentence to transform.
|
| 189 |
+
|
| 190 |
+
Return:
|
| 191 |
+
str – The readable reversed sentence.
|
| 192 |
+
"""
|
| 193 |
+
# 1️⃣ split into words, 2️⃣ reverse word order,
|
| 194 |
+
# 3️⃣ reverse letters in each word, 4️⃣ re-join
|
| 195 |
+
reversed_words = [word[::-1] for word in reversed(text.split())]
|
| 196 |
+
return " ".join(reversed_words)
|
| 197 |
+
|
| 198 |
+
@tool
|
| 199 |
+
def web_search(query: str):
|
| 200 |
+
"""
|
| 201 |
+
Description:
|
| 202 |
+
A web search tool. Scrapes the top results and returns each on its own line.
|
| 203 |
+
|
| 204 |
+
Arguments:
|
| 205 |
+
• query (str) : question you want to web search.
|
| 206 |
+
|
| 207 |
+
Return:
|
| 208 |
+
str – A newline-separated text summary: '<title> — <url> : <snippet>' or 'No results found'
|
| 209 |
+
"""
|
| 210 |
+
search = TavilySearchResults()
|
| 211 |
+
results = search.run(query)
|
| 212 |
+
return "\n".join([f"- {r['content']} ({r['url']})" for r in results])
|
| 213 |
+
|
| 214 |
+
@tool
|
| 215 |
+
def wikipedia_search(query: str):
|
| 216 |
+
"""
|
| 217 |
+
Description:
|
| 218 |
+
Query the English-language Wikipedia via the MediaWiki API and
|
| 219 |
+
return a short plain-text extract.
|
| 220 |
+
|
| 221 |
+
Arguments:
|
| 222 |
+
• query (str) : Page title or free-text search string.
|
| 223 |
+
|
| 224 |
+
Return:
|
| 225 |
+
str – Extracted summary paragraph.
|
| 226 |
+
"""
|
| 227 |
+
|
| 228 |
+
wiki = WikipediaAPIWrapper()
|
| 229 |
+
return wiki.run(query)
|
| 230 |
+
|
| 231 |
+
def download_youtube(url: str, out_dir: pathlib.Path) -> pathlib.Path:
|
| 232 |
+
delay = 2
|
| 233 |
+
yt = YouTube(url)
|
| 234 |
+
stream = yt.streams.filter(progressive=True, file_extension="mp4")\
|
| 235 |
+
.order_by("resolution").desc().first()
|
| 236 |
+
return pathlib.Path(stream.download(output_path=out_dir))
|
| 237 |
+
|
| 238 |
+
def key_frames_retrieval(video: pathlib.Path, max: int = 6, thresh: float = 0.35, max_frame_mb: float = 0.25):
|
| 239 |
+
"""
|
| 240 |
+
Scan *all* frames in `video`, keep every frame whose colour-histogram
|
| 241 |
+
differs from the previous scene by more than `thresh`, then return the first
|
| 242 |
+
`max` most-distinct ones (highest histogram distance).
|
| 243 |
+
|
| 244 |
+
Returns
|
| 245 |
+
-------
|
| 246 |
+
List[PIL.Image] # ≤ `limit` images, sorted by descending “scene change” score
|
| 247 |
+
"""
|
| 248 |
+
cap = cv2.VideoCapture(str(video))
|
| 249 |
+
ok, frame = cap.read()
|
| 250 |
+
|
| 251 |
+
if not ok:
|
| 252 |
+
cap.release()
|
| 253 |
+
return []
|
| 254 |
+
|
| 255 |
+
def hsv_hist(img) -> np.ndarray:
|
| 256 |
+
return cv2.calcHist(
|
| 257 |
+
[cv2.cvtColor(img, cv2.COLOR_BGR2HSV)],
|
| 258 |
+
[0, 1], None, [50, 60], [0, 180, 0, 256]
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
def bgr_to_pil(bgr) -> Image.Image:
|
| 262 |
+
img = Image.fromarray(cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB))
|
| 263 |
+
# shrink oversized frames so base64 prompt stays small
|
| 264 |
+
if (img.width * img.height * 3 / 1_048_576) > max_frame_mb:
|
| 265 |
+
img.thumbnail((800, 800))
|
| 266 |
+
return img
|
| 267 |
+
|
| 268 |
+
prev_hist = hsv_hist(frame)
|
| 269 |
+
candidates: list[tuple[float, Image.Image]] = [(1.0, bgr_to_pil(frame))] # always keep first
|
| 270 |
+
|
| 271 |
+
while ok:
|
| 272 |
+
|
| 273 |
+
ok, frame = cap.read()
|
| 274 |
+
|
| 275 |
+
if not ok:
|
| 276 |
+
break
|
| 277 |
+
|
| 278 |
+
hist = hsv_hist(frame)
|
| 279 |
+
|
| 280 |
+
diff = cv2.compareHist(prev_hist, hist, cv2.HISTCMP_BHATTACHARYYA)
|
| 281 |
+
|
| 282 |
+
if diff > thresh:
|
| 283 |
+
|
| 284 |
+
candidates.append((diff, bgr_to_pil(frame)))
|
| 285 |
+
prev_hist = hist
|
| 286 |
+
|
| 287 |
+
cap.release()
|
| 288 |
+
|
| 289 |
+
candidates.sort(key=lambda t: t[0], reverse=True)
|
| 290 |
+
|
| 291 |
+
top_frames = [img for _, img in candidates[:max]]
|
| 292 |
+
|
| 293 |
+
return top_frames
|
| 294 |
+
|
| 295 |
+
def audio_retrieval(video: pathlib.Path) -> str:
|
| 296 |
+
"""
|
| 297 |
+
Extract the audio track from `video`, save it as a temporary MP3,
|
| 298 |
+
and return the transcript produced by `audio_llm.audio_to_text`.
|
| 299 |
+
"""
|
| 300 |
+
with tempfile.NamedTemporaryFile(suffix=".mp3") as tmp_mp3:
|
| 301 |
+
(
|
| 302 |
+
ffmpeg
|
| 303 |
+
.input(str(video))
|
| 304 |
+
.output(
|
| 305 |
+
tmp_mp3.name,
|
| 306 |
+
ac=1, ar="16000", # mono, 16 kHz (keeps Whisper happy)
|
| 307 |
+
audio_bitrate="128k",
|
| 308 |
+
format="mp3",
|
| 309 |
+
loglevel="quiet"
|
| 310 |
+
)
|
| 311 |
+
.overwrite_output()
|
| 312 |
+
.run()
|
| 313 |
+
)
|
| 314 |
+
tmp_mp3.seek(0) # rewind before passing the handle
|
| 315 |
+
transcript = openai.audio.transcriptions.create(model=audio_llm, file=tmp_mp3, response_format="text")
|
| 316 |
+
|
| 317 |
+
return transcript
|
| 318 |
+
|
| 319 |
+
def img_to_data(img: Image.Image) -> str:
|
| 320 |
+
buf = io.BytesIO(); img.save(buf, format="PNG", optimize=True)
|
| 321 |
+
b64 = base64.b64encode(buf.getvalue()).decode()
|
| 322 |
+
return f"data:image/png;base64,{b64}"
|
| 323 |
+
|
| 324 |
+
def task_examiner(state: AgentState):
|
| 325 |
+
file_path = state["file_path"]
|
| 326 |
+
|
| 327 |
+
if file_path != None:
|
| 328 |
+
p = Path(file_path)
|
| 329 |
+
suffix = p.suffix
|
| 330 |
+
if suffix == ".png":
|
| 331 |
+
state["agent_type"] = "vision"
|
| 332 |
+
elif suffix == ".mp3":
|
| 333 |
+
state["agent_type"] = "audio"
|
| 334 |
+
elif suffix == ".py" or suffix == ".xlsx":
|
| 335 |
+
state["agent_type"] = "code"
|
| 336 |
+
else:
|
| 337 |
+
#if "video" in state["question"]:
|
| 338 |
+
# state["agent_type"] = "vision"
|
| 339 |
+
#else:
|
| 340 |
+
state["agent_type"] = "general"
|
| 341 |
+
return state
|
| 342 |
+
|
| 343 |
+
def task_router(state: AgentState) -> str:
|
| 344 |
+
|
| 345 |
+
return state["agent_type"]
|
| 346 |
+
|
| 347 |
+
def general_agent(state: AgentState):
|
| 348 |
+
|
| 349 |
+
question = state["question"]
|
| 350 |
+
|
| 351 |
+
tools = [web_search, wikipedia_search, reverse_string]
|
| 352 |
+
|
| 353 |
+
system_prompt = ChatPromptTemplate.from_messages([
|
| 354 |
+
("system",
|
| 355 |
+
"""
|
| 356 |
+
SYSTEM GUIDELINES:
|
| 357 |
+
- You are a general AI assistant that is tasked with answering correctly the user's questions.
|
| 358 |
+
- You have several tools in your disposal for differend kinds of tasks.
|
| 359 |
+
- You **MUST** think step by step before using any tool and call the tools only when you are sure that you need them.
|
| 360 |
+
**Tool-reuse rule:**
|
| 361 |
+
- Keep an internal list of tool names you have already called in this answer
|
| 362 |
+
- If a name is on that list you MUST NOT call it again. (You may still call a different tool once.)
|
| 363 |
+
TOOLS:
|
| 364 |
+
- reverse_string: This is a tool that reverses a sentence so if a question is not readable then try to pass it to this tool.
|
| 365 |
+
- web_search: This tool takes a question as input and searches the web for up-to-date information and return an answer.
|
| 366 |
+
- wikipedia_search: This searches exclusively the english wikipedia page for up-to-date information that may not available in your training data.
|
| 367 |
+
INPUT FORMAT:
|
| 368 |
+
- A question (text) that you should answer correctly.
|
| 369 |
+
OUTPUT FORMAT:
|
| 370 |
+
Output **ONLY** the final answer dictated by the user's question and nothing more
|
| 371 |
+
**IMPORTANT** If the question contains a youtube link (https://www.youtube.com/watch?...) and **ONLY THEN** output this "Don't know".
|
| 372 |
+
If the question tells you to output 'How many ...' you **MUST** response with **only** a single numeral and absolutely nothing else (no punctuation, no sentence, no units).
|
| 373 |
+
If the question tells you to output 'What number ...' you **MUST** response with **only** a single numeral and absolutely nothing else (no punctuation, no sentence, no units).
|
| 374 |
+
If the question tells you to output 'Who did ...' you **MUST** response with **only** the full name unless the question directs you otherwise and absolutely nothing else (no punctuation, no sentence, no units).
|
| 375 |
+
If the question tells you to output 'Provide a comma-separated list that ...' you **MUST** response with **only** a comma-separated list '[...,...,...]' as instructed and absolutely nothing else (no punctuation, no sentence, no units).
|
| 376 |
+
If the question asks to output a list -> Output: [item1,item2,item3]
|
| 377 |
+
If the question tells you to output 'What does the person A say when ...' you **MUST** response with **only** the phrase that person says and absolutely nothing else (no punctuation, no sentence, no units).
|
| 378 |
+
"""),
|
| 379 |
+
("user", "{input}"),
|
| 380 |
+
MessagesPlaceholder("agent_scratchpad"),
|
| 381 |
+
])
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
agent = OpenAIFunctionsAgent(
|
| 385 |
+
llm=general_llm,
|
| 386 |
+
tools=tools,
|
| 387 |
+
prompt=system_prompt
|
| 388 |
+
)
|
| 389 |
+
|
| 390 |
+
agent_executor = AgentExecutor.from_agent_and_tools(
|
| 391 |
+
agent=agent,
|
| 392 |
+
tools=tools,
|
| 393 |
+
verbose=True,
|
| 394 |
+
)
|
| 395 |
+
|
| 396 |
+
response = agent_executor.invoke({"input": question})
|
| 397 |
+
|
| 398 |
+
state["answer"] = response["output"]
|
| 399 |
+
|
| 400 |
+
return state
|
| 401 |
+
|
| 402 |
+
def audio_agent(state: AgentState):
|
| 403 |
+
|
| 404 |
+
with open(state["file_path"], "rb") as f:
|
| 405 |
+
transcript = openai.audio.transcriptions.create(model=audio_llm, file=f, response_format="text")
|
| 406 |
+
|
| 407 |
+
question = state["question"]
|
| 408 |
+
|
| 409 |
+
system_msg = SystemMessage(
|
| 410 |
+
content=("You are an AI assistant that answers the user's question based solely on the provided transcript."
|
| 411 |
+
"When the user asks for a “comma-delimited / comma-separated list”, you must:"
|
| 412 |
+
" - Filter the items exactly as requested."
|
| 413 |
+
" - Output one single line that contains the items separated by commas and a space enclosed in square brackets."
|
| 414 |
+
" - Output nothing else- no extra words or explanations"
|
| 415 |
+
"OUTPUT FORMAT EXAMPLES:"
|
| 416 |
+
"If asked to output a list -> Output: [item1,item2,item3]"
|
| 417 |
+
"If asked something else -> Output: text answering exactly that question and nothing more"
|
| 418 |
+
)
|
| 419 |
+
)
|
| 420 |
+
|
| 421 |
+
messages = [
|
| 422 |
+
system_msg,
|
| 423 |
+
HumanMessage(
|
| 424 |
+
content=[
|
| 425 |
+
{
|
| 426 |
+
"type": "text",
|
| 427 |
+
"text": f"Transcript:\n{transcript}\n\nQuestion:\n{question}"
|
| 428 |
+
}
|
| 429 |
+
]
|
| 430 |
+
)
|
| 431 |
+
]
|
| 432 |
+
|
| 433 |
+
response = general_llm.invoke(messages)
|
| 434 |
+
|
| 435 |
+
state["answer"] = response.content.strip()
|
| 436 |
+
|
| 437 |
+
return state
|
| 438 |
+
|
| 439 |
+
def vision_agent(state: AgentState):
|
| 440 |
+
|
| 441 |
+
file_path = state["file_path"]
|
| 442 |
+
question = state["question"]
|
| 443 |
+
|
| 444 |
+
with open(file_path, "rb") as image_file:
|
| 445 |
|
| 446 |
+
image_bytes = image_file.read()
|
| 447 |
+
|
| 448 |
+
image_base64 = base64.b64encode(image_bytes).decode("utf-8")
|
| 449 |
+
|
| 450 |
+
system_msg = SystemMessage(
|
| 451 |
+
content=("""
|
| 452 |
+
You are a Vision AI assistant that can process images and answer correctly the user's questions"
|
| 453 |
+
**OUTPUT** only the final answer and absolutely nothing else (no punctuation, no sentence, no units).
|
| 454 |
+
""")
|
| 455 |
+
)
|
| 456 |
+
|
| 457 |
+
messages = [
|
| 458 |
+
system_msg,
|
| 459 |
+
HumanMessage(
|
| 460 |
+
content=[
|
| 461 |
+
{
|
| 462 |
+
"type": "text",
|
| 463 |
+
"text": (f"{question}")
|
| 464 |
+
},
|
| 465 |
+
{
|
| 466 |
+
"type": "image_url",
|
| 467 |
+
"image_url": {
|
| 468 |
+
"url": f"data:image/png;base64,{image_base64}"
|
| 469 |
+
},
|
| 470 |
+
}
|
| 471 |
+
]
|
| 472 |
+
)
|
| 473 |
+
]
|
| 474 |
|
| 475 |
+
response = general_llm.invoke(messages)
|
| 476 |
|
| 477 |
+
state["answer"] = response.content.strip()
|
| 478 |
+
|
| 479 |
+
return state
|
| 480 |
|
| 481 |
+
def code_agent(state: AgentState):
|
| 482 |
+
|
| 483 |
+
file_path = state["file_path"]
|
| 484 |
+
question = state["question"]
|
| 485 |
+
|
| 486 |
+
tools = [xlsx_handler, python_handler, addition_tool]
|
| 487 |
+
|
| 488 |
+
system_prompt = ChatPromptTemplate.from_messages([
|
| 489 |
+
("system",
|
| 490 |
+
""" SYSTEM GUIDELINES:
|
| 491 |
+
- You are a data AI assistant and your job is to answer questions that depend on .xlsx or .py files.
|
| 492 |
+
- You have in your disposal 2 tools that are mandatory for solving the tasks.
|
| 493 |
+
- You **MUST** use the tools as instructed below and you **MUST** output only the final numeric result of the task.
|
| 494 |
+
INPUT FORMAT:
|
| 495 |
+
- A question (text) based on a file which will be either .py or .xlsx.
|
| 496 |
+
- The path of the file related to the question.
|
| 497 |
+
TOOLS:
|
| 498 |
+
- Tool name: xlsx_handler, Purpose: This is the tool you should use if the file contained in the file_path is an .xlsx file and it's purpose is to return the contents of the file in a list of dictionaries for you to process, reason **INTERNALLY** and output only the final numeric result.
|
| 499 |
+
- Tool name: python_handler, Purpose: This is the tool you should use if the file contained in the file_path is a .py file and it's purpose is to execute the python file and return the final numeric result of it.
|
| 500 |
+
- Tool name: addition_tool, Purpose: This is the tool you should use if the question asks you to sum a list of numbers and return the final numeric result.
|
| 501 |
+
EXAMPLE OUTPUTS:
|
| 502 |
+
- Input: "What is the result of the code in the file?" Output: "5"
|
| 503 |
+
- Input: "What is the total sales mentioned in the file. Your answer must have 2 decimal places?" Output: "305.00"
|
| 504 |
+
- YOU MUST OUTPUT ONLY THE FINAL NUMBER.
|
| 505 |
+
|
| 506 |
+
The file relevant to the task is at: {file_path}."""),
|
| 507 |
+
("user", "{input}"),
|
| 508 |
+
MessagesPlaceholder("agent_scratchpad"),
|
| 509 |
+
])
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
agent = OpenAIFunctionsAgent(
|
| 513 |
+
llm=general_llm,
|
| 514 |
+
tools=tools,
|
| 515 |
+
prompt=system_prompt
|
| 516 |
+
)
|
| 517 |
+
|
| 518 |
+
agent_executor = AgentExecutor.from_agent_and_tools(
|
| 519 |
+
agent=agent,
|
| 520 |
+
tools=tools,
|
| 521 |
+
verbose=True,
|
| 522 |
+
)
|
| 523 |
+
|
| 524 |
+
#agent_executor = agent_executor.partial(file_path=file_path)
|
| 525 |
+
|
| 526 |
+
response = agent_executor.invoke({"input": question, "file_path": file_path})
|
| 527 |
+
|
| 528 |
+
state["answer"] = response["output"]
|
| 529 |
+
|
| 530 |
+
return state
|
| 531 |
+
|
| 532 |
+
class Agent_Workflow:
|
| 533 |
+
def __init__(self):
|
| 534 |
+
print("Agent Workflow initialized.")
|
| 535 |
+
def __call__(self, question: str, filepath: str) -> str:
|
| 536 |
+
|
| 537 |
+
builder = StateGraph(AgentState)
|
| 538 |
+
|
| 539 |
+
# Agent Nodes
|
| 540 |
+
builder.add_node("task_examiner", task_examiner)
|
| 541 |
+
builder.add_node("general_agent", general_agent)
|
| 542 |
+
builder.add_node("audio_agent", audio_agent)
|
| 543 |
+
builder.add_node("vision_agent", vision_agent)
|
| 544 |
+
builder.add_node("code_agent", code_agent)
|
| 545 |
+
|
| 546 |
+
# Edges that connect agent nodes
|
| 547 |
+
builder.add_edge(START, "task_examiner")
|
| 548 |
+
builder.add_conditional_edges("task_examiner", task_router,
|
| 549 |
+
{
|
| 550 |
+
"general": "general_agent",
|
| 551 |
+
"audio": "audio_agent",
|
| 552 |
+
"vision": "vision_agent",
|
| 553 |
+
"code": "code_agent"
|
| 554 |
+
}
|
| 555 |
+
)
|
| 556 |
+
builder.add_edge("general_agent", END)
|
| 557 |
+
builder.add_edge("audio_agent", END)
|
| 558 |
+
builder.add_edge("vision_agent", END)
|
| 559 |
+
builder.add_edge("code_agent", END)
|
| 560 |
+
|
| 561 |
+
workflow_graph = builder.compile()
|
| 562 |
+
|
| 563 |
+
state = workflow_graph.invoke({"file_path": filepath, "question": question, "answer": "",})
|
| 564 |
+
|
| 565 |
+
return state["answer"]
|
| 566 |
+
|
| 567 |
+
def fetch_task_file_static(task_id: str, file_name: str | None = None, session: requests.Session | None = None) -> Path:
|
| 568 |
+
"""
|
| 569 |
+
Download the attachment for `task_id` to temp_files/<task_id>.<suffix>
|
| 570 |
+
"""
|
| 571 |
+
if file_name == None:
|
| 572 |
+
return None
|
| 573 |
+
|
| 574 |
+
# Decide the suffix
|
| 575 |
+
suffix = Path(file_name).suffix if file_name else ""
|
| 576 |
+
dest = "temp/"+task_id+suffix
|
| 577 |
+
|
| 578 |
+
url = f"{DEFAULT_API_URL}/files/{task_id}"
|
| 579 |
+
s = session or requests
|
| 580 |
+
|
| 581 |
+
with s.get(url, stream=True, timeout=30) as r:
|
| 582 |
+
r.raise_for_status()
|
| 583 |
+
with open(dest, "wb") as f:
|
| 584 |
+
shutil.copyfileobj(r.raw, f)
|
| 585 |
+
|
| 586 |
+
return dest
|
| 587 |
|
| 588 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
| 589 |
"""
|
|
|
|
| 606 |
|
| 607 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 608 |
try:
|
| 609 |
+
agent = Agent_Workflow()
|
| 610 |
except Exception as e:
|
| 611 |
print(f"Error instantiating agent: {e}")
|
| 612 |
return f"Error initializing agent: {e}", None
|
| 613 |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
| 614 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
|
|
|
| 615 |
|
| 616 |
# 2. Fetch Questions
|
| 617 |
print(f"Fetching questions from: {questions_url}")
|
|
|
|
| 638 |
results_log = []
|
| 639 |
answers_payload = []
|
| 640 |
print(f"Running agent on {len(questions_data)} questions...")
|
| 641 |
+
session = requests.Session()
|
| 642 |
|
| 643 |
+
#j=0
|
| 644 |
for item in questions_data:
|
| 645 |
+
task_id = item["task_id"]
|
| 646 |
+
question = item["question"]
|
| 647 |
+
file_name = item.get("file_name")
|
| 648 |
+
|
| 649 |
+
file_path = None
|
| 650 |
+
|
| 651 |
+
if file_name:
|
| 652 |
+
try:
|
| 653 |
+
file_path = fetch_task_file_static(task_id, file_name, session=session)
|
| 654 |
+
except requests.HTTPError as e:
|
| 655 |
+
print(f"⚠️ Couldn’t fetch file for {task_id}: {e}")
|
| 656 |
+
|
| 657 |
+
#print(f"Question is : {question}\n")
|
| 658 |
+
#[2,4,5,6,7,8,10,12,15,16,17]
|
| 659 |
+
"""
|
| 660 |
+
if j in [2,4,5,6,7,8,10,12,15,16,17]:
|
| 661 |
+
time.sleep(5)
|
| 662 |
+
print(f"Question is : {question}")
|
| 663 |
+
print(f"File path is : {file_path}")
|
| 664 |
+
submitted_answer = agent(question=question, filepath=file_path)
|
| 665 |
+
print(f"Answer is : {submitted_answer}")
|
| 666 |
+
|
| 667 |
+
j=j+1
|
| 668 |
"""
|
| 669 |
+
print(f"Question {j+1} is : {question}")
|
| 670 |
+
print(f"File path is : {file_path}")
|
| 671 |
+
|
| 672 |
+
if not task_id or question is None:
|
| 673 |
print(f"Skipping item with missing task_id or question: {item}")
|
| 674 |
continue
|
| 675 |
try:
|
| 676 |
+
submitted_answer = agent(question=question, filepath=file_path)
|
| 677 |
+
print(f"Answer for question {j+1} is: {submitted_answer}")
|
| 678 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 679 |
+
results_log.append({"Task ID": task_id, "Question": question, "Submitted Answer": submitted_answer})
|
| 680 |
except Exception as e:
|
| 681 |
print(f"Error running agent on task {task_id}: {e}")
|
| 682 |
+
results_log.append({"Task ID": task_id, "Question": question, "Submitted Answer": f"AGENT ERROR: {e}"})
|
| 683 |
+
|
| 684 |
+
j=j+1
|
| 685 |
+
|
| 686 |
|
| 687 |
if not answers_payload:
|
| 688 |
print("Agent did not produce any answers to submit.")
|
| 689 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 690 |
+
|
| 691 |
# 4. Prepare Submission
|
| 692 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
| 693 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
|
|
|
| 735 |
print(status_message)
|
| 736 |
results_df = pd.DataFrame(results_log)
|
| 737 |
return status_message, results_df
|
| 738 |
+
|
| 739 |
|
| 740 |
# --- Build Gradio Interface using Blocks ---
|
| 741 |
with gr.Blocks() as demo:
|
|
|
|
| 769 |
)
|
| 770 |
|
| 771 |
if __name__ == "__main__":
|
| 772 |
+
print(os.getenv("HF_TOKEN"))
|
| 773 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
| 774 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
| 775 |
space_host_startup = os.getenv("SPACE_HOST")
|