Spaces:
Sleeping
Sleeping
File size: 4,342 Bytes
bf17f74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
# Backend Inference Service
FastAPI-based REST API for waste classification inference and feedback collection.
## Setup
### 1. Install Dependencies
\`\`\`bash
pip install -r backend/requirements.txt
pip install -r ml/requirements.txt
\`\`\`
### 2. Train or Download Model
Ensure you have a trained model at `ml/models/best_model.pth`:
\`\`\`bash
# Train a model
python ml/train.py
# Or download a pretrained model (if available)
# Place it in ml/models/best_model.pth
\`\`\`
### 3. Start Service
\`\`\`bash
# Development
python backend/inference_service.py
# Production with Gunicorn
gunicorn backend.inference_service:app -w 4 -k uvicorn.workers.UvicornWorker --bind 0.0.0.0:8000
\`\`\`
Service will be available at `http://localhost:8000`
## API Endpoints
### Health Check
\`\`\`bash
GET /
GET /health
\`\`\`
Response:
\`\`\`json
{
"status": "healthy",
"model_loaded": true,
"timestamp": "2024-01-01T00:00:00"
}
\`\`\`
### Predict
\`\`\`bash
POST /predict
Content-Type: application/json
{
"image": "..."
}
\`\`\`
Response:
\`\`\`json
{
"category": "recyclable",
"confidence": 0.95,
"probabilities": {
"recyclable": 0.95,
"organic": 0.02,
"wet-waste": 0.01,
"dry-waste": 0.01,
"ewaste": 0.005,
"hazardous": 0.003,
"landfill": 0.002
},
"timestamp": 1704067200000
}
\`\`\`
### Feedback
\`\`\`bash
POST /feedback
Content-Type: application/json
{
"image": "...",
"predicted_category": "recyclable",
"corrected_category": "organic",
"confidence": 0.75
}
\`\`\`
Response:
\`\`\`json
{
"status": "success",
"message": "Feedback saved for retraining",
"saved_path": "ml/data/retraining/organic/feedback_20240101_120000.jpg"
}
\`\`\`
### Trigger Retraining
\`\`\`bash
POST /retrain
Authorization: Bearer <ADMIN_API_KEY>
\`\`\`
Response:
\`\`\`json
{
"status": "started",
"message": "Retraining initiated with 150 new samples",
"feedback_count": 150
}
\`\`\`
### Retraining Status
\`\`\`bash
GET /retrain/status
\`\`\`
Response:
\`\`\`json
{
"status": "success",
"total_retrains": 3,
"events": [...],
"latest": {
"version": 3,
"timestamp": "2024-01-01T00:00:00",
"accuracy": 92.5,
"improvement": 2.3,
"new_samples": 150
}
}
\`\`\`
### Statistics
\`\`\`bash
GET /stats
\`\`\`
Response:
\`\`\`json
{
"model_loaded": true,
"categories": ["recyclable", "organic", ...],
"feedback_samples": 150,
"feedback_by_category": {
"recyclable": 45,
"organic": 38,
...
}
}
\`\`\`
## Docker Deployment
### Build and Run
\`\`\`bash
# Build image
docker build -f backend/Dockerfile -t waste-classification-api .
# Run container
docker run -p 8000:8000 \
-v $(pwd)/ml/models:/app/ml/models \
-v $(pwd)/ml/data:/app/ml/data \
waste-classification-api
\`\`\`
### Using Docker Compose
\`\`\`bash
# Start all services
docker-compose up -d
# View logs
docker-compose logs -f
# Stop services
docker-compose down
\`\`\`
## Environment Variables
- `PORT`: Server port (default: 8000)
- `ADMIN_API_KEY`: Admin key for retraining endpoint
## Performance
- **Inference Time**: ~50ms per image (CPU)
- **Throughput**: ~20 requests/second (single worker)
- **Memory**: ~500MB with model loaded
- **Scaling**: Deploy multiple workers for higher throughput
## Production Deployment
### Railway / Render
1. Connect your repository
2. Set build command: `pip install -r backend/requirements.txt -r ml/requirements.txt`
3. Set start command: `python backend/inference_service.py`
4. Set environment variables
5. Deploy
### AWS EC2
1. Launch EC2 instance (t3.medium or higher)
2. Install Docker
3. Clone repository
4. Run with Docker Compose
5. Configure security group (port 8000)
6. Set up SSL with Nginx reverse proxy
### Vercel (Not Recommended)
FastAPI with ML models exceeds serverless function limits. Use Railway, Render, or AWS EC2 instead.
## Monitoring
Add application monitoring:
\`\`\`python
from prometheus_fastapi_instrumentator import Instrumentator
Instrumentator().instrument(app).expose(app)
\`\`\`
Access metrics at `/metrics`
## Security
- Add rate limiting with `slowapi`
- Implement proper authentication
- Validate image sizes and formats
- Use HTTPS in production
- Restrict CORS origins
- Sanitize file uploads
\`\`\`
|