File size: 5,084 Bytes
bf17f74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
"""
Inference script for waste classification
Optimized for CPU with fast preprocessing
"""

import torch
import torch.nn.functional as F
from torchvision import transforms, models
from PIL import Image
import numpy as np
import base64
from io import BytesIO
import json
from pathlib import Path

class WasteClassifier:
    """Waste classification inference class"""
    
    def __init__(self, model_path='ml/models/best_model.pth', device=None):
        self.device = device or torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        
        # Load checkpoint
        checkpoint = torch.load(model_path, map_location=self.device)
        self.categories = checkpoint['categories']
        
        # Create model
        self.model = models.efficientnet_b0(pretrained=False)
        num_features = self.model.classifier[1].in_features
        self.model.classifier = torch.nn.Sequential(
            torch.nn.Dropout(p=0.3),
            torch.nn.Linear(num_features, len(self.categories))
        )
        
        # Load weights
        self.model.load_state_dict(checkpoint['model_state_dict'])
        self.model.to(self.device)
        self.model.eval()
        
        # Setup transforms
        self.transform = transforms.Compose([
            transforms.Resize((224, 224)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], 
                               std=[0.229, 0.224, 0.225])
        ])
        
        print(f"Model loaded successfully on {self.device}")
        print(f"Categories: {self.categories}")
    
    def preprocess_image(self, image_input):
        """
        Preprocess image from various input formats
        Accepts: PIL Image, file path, base64 string, or numpy array
        """
        if isinstance(image_input, str):
            if image_input.startswith('data:image'):
                # Base64 encoded image
                image_data = image_input.split(',')[1]
                image_bytes = base64.b64decode(image_data)
                image = Image.open(BytesIO(image_bytes)).convert('RGB')
            else:
                # File path
                image = Image.open(image_input).convert('RGB')
        elif isinstance(image_input, np.ndarray):
            image = Image.fromarray(image_input).convert('RGB')
        elif isinstance(image_input, Image.Image):
            image = image_input.convert('RGB')
        else:
            raise ValueError(f"Unsupported image input type: {type(image_input)}")
        
        return self.transform(image).unsqueeze(0)
    
    def predict(self, image_input):
        """
        Predict waste category for input image
        
        Returns:
            dict: {
                'category': str,
                'confidence': float,
                'probabilities': dict
            }
        """
        # Preprocess
        image_tensor = self.preprocess_image(image_input).to(self.device)
        
        # Inference
        with torch.no_grad():
            outputs = self.model(image_tensor)
            probabilities = F.softmax(outputs, dim=1)
            confidence, predicted_idx = torch.max(probabilities, 1)
        
        # Format results
        predicted_category = self.categories[predicted_idx.item()]
        confidence_score = confidence.item()
        
        # Get all probabilities
        prob_dict = {
            category: float(prob) 
            for category, prob in zip(self.categories, probabilities[0].cpu().numpy())
        }
        
        return {
            'category': predicted_category,
            'confidence': confidence_score,
            'probabilities': prob_dict,
            'timestamp': int(np.datetime64('now').astype(int) / 1000000)
        }
    
    def predict_batch(self, image_inputs):
        """Predict for multiple images"""
        results = []
        for image_input in image_inputs:
            results.append(self.predict(image_input))
        return results

def export_to_onnx(model_path='ml/models/best_model.pth', 
                   output_path='ml/models/model.onnx'):
    """Export PyTorch model to ONNX format for deployment"""
    
    classifier = WasteClassifier(model_path)
    
    # Create dummy input
    dummy_input = torch.randn(1, 3, 224, 224).to(classifier.device)
    
    # Export
    torch.onnx.export(
        classifier.model,
        dummy_input,
        output_path,
        export_params=True,
        opset_version=12,
        do_constant_folding=True,
        input_names=['input'],
        output_names=['output'],
        dynamic_axes={
            'input': {0: 'batch_size'},
            'output': {0: 'batch_size'}
        }
    )
    
    print(f"Model exported to ONNX: {output_path}")

if __name__ == "__main__":
    # Test inference
    classifier = WasteClassifier()
    
    # Example usage
    test_image = "ml/data/processed/test/recyclable/sample.jpg"
    if Path(test_image).exists():
        result = classifier.predict(test_image)
        print("\nPrediction Result:")
        print(json.dumps(result, indent=2))