garbage-segregate / backend /inference_service.py
Rahiq's picture
Deploy waste classification backend with ML model
bf17f74
"""
FastAPI inference service for waste classification
Provides REST API for predictions, feedback collection, and retraining
"""
from fastapi import FastAPI, HTTPException, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from pathlib import Path
import base64
from datetime import datetime
import json
import sys
import os
# Add ML directory to path
sys.path.append(str(Path(__file__).parent.parent))
from ml.predict import WasteClassifier
from ml.retrain import retrain_model
app = FastAPI(
title="AI Waste Segregation API",
description="ML inference service for waste classification",
version="1.0.0"
)
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Configure appropriately for production
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Global classifier instance
classifier = None
MODEL_PATH = Path(__file__).parent.parent / "ml" / "models" / "best_model.pth"
RETRAINING_DIR = Path(__file__).parent.parent / "ml" / "data" / "retraining"
class PredictionRequest(BaseModel):
image: str # Base64 encoded image
class PredictionResponse(BaseModel):
category: str
confidence: float
probabilities: dict
timestamp: int
class FeedbackRequest(BaseModel):
image: str
predicted_category: str
corrected_category: str
confidence: float
class FeedbackResponse(BaseModel):
status: str
message: str
saved_path: str
@app.on_event("startup")
async def startup_event():
"""Load ML model on startup"""
global classifier
if not MODEL_PATH.exists():
print(f"Warning: Model not found at {MODEL_PATH}")
print("Please train a model first using: python ml/train.py")
return
try:
classifier = WasteClassifier(str(MODEL_PATH))
print(f"Model loaded successfully from {MODEL_PATH}")
except Exception as e:
print(f"Error loading model: {e}")
@app.get("/")
async def root():
"""Health check endpoint"""
return {
"status": "online",
"service": "AI Waste Segregation API",
"model_loaded": classifier is not None,
"version": "1.0.0"
}
@app.get("/health")
async def health():
"""Detailed health check"""
return {
"status": "healthy",
"model_loaded": classifier is not None,
"model_path": str(MODEL_PATH),
"timestamp": datetime.now().isoformat()
}
@app.post("/predict", response_model=PredictionResponse)
async def predict(request: PredictionRequest):
"""
Predict waste category from image
Args:
request: PredictionRequest with base64 encoded image
Returns:
PredictionResponse with category, confidence, and probabilities
"""
if classifier is None:
raise HTTPException(
status_code=503,
detail="Model not loaded. Please train a model first."
)
try:
# Perform prediction
result = classifier.predict(request.image)
return PredictionResponse(
category=result['category'],
confidence=result['confidence'],
probabilities=result['probabilities'],
timestamp=result['timestamp']
)
except Exception as e:
print(f"Prediction error: {e}")
raise HTTPException(
status_code=500,
detail=f"Prediction failed: {str(e)}"
)
@app.post("/feedback", response_model=FeedbackResponse)
async def save_feedback(request: FeedbackRequest):
"""
Save user feedback for continuous learning
Args:
request: FeedbackRequest with image and corrected category
Returns:
FeedbackResponse with save status
"""
try:
# Create retraining directory for corrected category
category_dir = RETRAINING_DIR / request.corrected_category
category_dir.mkdir(parents=True, exist_ok=True)
# Generate unique filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
filename = f"feedback_{timestamp}.jpg"
filepath = category_dir / filename
# Decode and save image
if request.image.startswith('data:image'):
image_data = request.image.split(',')[1]
else:
image_data = request.image
image_bytes = base64.b64decode(image_data)
with open(filepath, 'wb') as f:
f.write(image_bytes)
# Save metadata
metadata = {
'timestamp': timestamp,
'predicted_category': request.predicted_category,
'corrected_category': request.corrected_category,
'confidence': request.confidence,
'saved_at': datetime.now().isoformat()
}
metadata_path = category_dir / f"feedback_{timestamp}.json"
with open(metadata_path, 'w') as f:
json.dump(metadata, f, indent=2)
print(f"Feedback saved: {request.predicted_category} -> {request.corrected_category}")
return FeedbackResponse(
status="success",
message="Feedback saved for retraining",
saved_path=str(filepath)
)
except Exception as e:
print(f"Feedback save error: {e}")
raise HTTPException(
status_code=500,
detail=f"Failed to save feedback: {str(e)}"
)
@app.post("/retrain")
async def trigger_retrain(background_tasks: BackgroundTasks):
"""
Trigger model retraining with accumulated feedback
Runs as background task to avoid timeout
"""
# Check if there's feedback to retrain on
if not RETRAINING_DIR.exists():
raise HTTPException(
status_code=400,
detail="No feedback data available for retraining"
)
feedback_count = sum(1 for _ in RETRAINING_DIR.rglob('*.jpg'))
if feedback_count == 0:
raise HTTPException(
status_code=400,
detail="No feedback samples found for retraining"
)
# Add retraining to background tasks
background_tasks.add_task(retrain_model)
return {
"status": "started",
"message": f"Retraining initiated with {feedback_count} new samples",
"feedback_count": feedback_count
}
@app.get("/retrain/status")
async def get_retrain_status():
"""Get retraining history and status"""
log_file = Path(__file__).parent.parent / "ml" / "models" / "retraining_log.json"
if not log_file.exists():
return {
"status": "no_history",
"message": "No retraining history available",
"events": []
}
try:
with open(log_file, 'r') as f:
log = json.load(f)
return {
"status": "success",
"total_retrains": len(log),
"events": log[-10:], # Last 10 events
"latest": log[-1] if log else None
}
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Failed to read retraining log: {str(e)}"
)
@app.get("/stats")
async def get_stats():
"""Get system statistics"""
# Count feedback samples
feedback_count = 0
feedback_by_category = {}
if RETRAINING_DIR.exists():
for category in classifier.categories if classifier else []:
category_dir = RETRAINING_DIR / category
if category_dir.exists():
count = len(list(category_dir.glob('*.jpg')))
feedback_by_category[category] = count
feedback_count += count
return {
"model_loaded": classifier is not None,
"categories": classifier.categories if classifier else [],
"feedback_samples": feedback_count,
"feedback_by_category": feedback_by_category,
"model_path": str(MODEL_PATH),
"model_exists": MODEL_PATH.exists()
}
if __name__ == "__main__":
import uvicorn
port = int(os.getenv("PORT", 7860))
uvicorn.run(
"inference_service:app",
host="0.0.0.0",
port=port,
reload=True
)