File size: 1,850 Bytes
ee94b36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import nltk
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
import os 
from functions.fer import Model
import cv2
import dlib
from functions.valence_arousal import load_models
# Download necessary NLTK packages
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')


# Device setup
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
models_folder=os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'models')
fer_model_path=os.path.join(models_folder,'22.6_AffectNet_10K_part2.pt')
val_ar_feat_path=os.path.join(models_folder,'resnet_features.pt')
valence_arousal_model=os.path.join(models_folder,'emotion_model.pt')


# Load Whisper model and processor
model_id = "openai/whisper-small"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
    model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
sentipipe = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-sentiment", device=device)




fer_model=Model(fps=30,fer_model=fer_model_path)
resnet,emotion_model=load_models(valence_arousal_model,val_ar_feat_path)

smile_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_smile.xml')


dnn_net = cv2.dnn.readNetFromCaffe("models/deploy.prototxt", "models/res10_300x300_ssd_iter_140000.caffemodel")

predictor = dlib.shape_predictor("models/shape_predictor_68_face_landmarks.dat")




models_dict={
    'asrmodel':model,
    'asrproc':processor,
    'sentipipe':sentipipe,
    'fer':fer_model,
    "valence_fer":(resnet,emotion_model),
    'smile_cascade':smile_cascade,
    'face':(dnn_net,predictor)
}