Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,46 +1,36 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import
|
| 3 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
| 4 |
-
from langchain_community.document_loaders import TextLoader
|
| 5 |
-
from langchain_community.vectorstores import FAISS
|
| 6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
|
|
|
|
|
|
|
| 7 |
from langchain.chains import RetrievalQA
|
| 8 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 9 |
-
from langchain_huggingface import HuggingFacePipeline
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
# Load and process the document
|
| 14 |
doc_loader = TextLoader("dataset.txt")
|
| 15 |
docs = doc_loader.load()
|
| 16 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
| 17 |
split_docs = text_splitter.split_documents(docs)
|
| 18 |
|
| 19 |
-
# Create
|
| 20 |
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
| 21 |
vectordb = FAISS.from_documents(split_docs, embeddings)
|
| 22 |
|
| 23 |
-
# Load model and
|
| 24 |
model_name = "01-ai/Yi-Coder-9B-Chat"
|
| 25 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 26 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 27 |
-
model_name,
|
| 28 |
-
device_map="auto",
|
| 29 |
-
torch_dtype=torch.float16 if device == "cuda" else torch.float32
|
| 30 |
-
)
|
| 31 |
-
|
| 32 |
-
# Set up the QA pipeline
|
| 33 |
qa_pipeline = pipeline(
|
| 34 |
"text-generation",
|
| 35 |
model=model,
|
| 36 |
tokenizer=tokenizer,
|
| 37 |
-
max_new_tokens=
|
| 38 |
pad_token_id=tokenizer.eos_token_id
|
| 39 |
)
|
| 40 |
|
|
|
|
| 41 |
llm = HuggingFacePipeline(pipeline=qa_pipeline)
|
| 42 |
-
|
| 43 |
-
# Set up the retriever and QA chain
|
| 44 |
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
|
| 45 |
qa_chain = RetrievalQA.from_chain_type(
|
| 46 |
retriever=retriever,
|
|
@@ -66,20 +56,17 @@ def chatbot_response(user_input):
|
|
| 66 |
return clean_response(raw_response)
|
| 67 |
|
| 68 |
# Gradio interface
|
| 69 |
-
with gr.Blocks() as
|
| 70 |
gr.Markdown("# CPSL Chatbot")
|
| 71 |
-
chat_history = gr.Chatbot(
|
| 72 |
user_input = gr.Textbox(label="Your Message:")
|
| 73 |
send_button = gr.Button("Send")
|
| 74 |
|
| 75 |
def interact(user_message, history):
|
| 76 |
bot_reply = chatbot_response(user_message)
|
| 77 |
-
history.append(
|
| 78 |
-
history.append({"role": "assistant", "content": bot_reply})
|
| 79 |
return history, history
|
| 80 |
|
| 81 |
send_button.click(interact, inputs=[user_input, chat_history], outputs=[chat_history, chat_history])
|
| 82 |
|
| 83 |
-
#
|
| 84 |
-
if __name__ == "__main__":
|
| 85 |
-
chat_interface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from langchain.document_loaders import TextLoader
|
|
|
|
|
|
|
|
|
|
| 3 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 4 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 5 |
+
from langchain.vectorstores import FAISS
|
| 6 |
+
from langchain.llms import HuggingFacePipeline
|
| 7 |
from langchain.chains import RetrievalQA
|
| 8 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
|
|
| 9 |
|
| 10 |
+
# Load and process documents
|
|
|
|
|
|
|
| 11 |
doc_loader = TextLoader("dataset.txt")
|
| 12 |
docs = doc_loader.load()
|
| 13 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
| 14 |
split_docs = text_splitter.split_documents(docs)
|
| 15 |
|
| 16 |
+
# Create vector database
|
| 17 |
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
| 18 |
vectordb = FAISS.from_documents(split_docs, embeddings)
|
| 19 |
|
| 20 |
+
# Load model and create pipeline
|
| 21 |
model_name = "01-ai/Yi-Coder-9B-Chat"
|
| 22 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 23 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
qa_pipeline = pipeline(
|
| 25 |
"text-generation",
|
| 26 |
model=model,
|
| 27 |
tokenizer=tokenizer,
|
| 28 |
+
max_new_tokens=500,
|
| 29 |
pad_token_id=tokenizer.eos_token_id
|
| 30 |
)
|
| 31 |
|
| 32 |
+
# Set up LangChain
|
| 33 |
llm = HuggingFacePipeline(pipeline=qa_pipeline)
|
|
|
|
|
|
|
| 34 |
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
|
| 35 |
qa_chain = RetrievalQA.from_chain_type(
|
| 36 |
retriever=retriever,
|
|
|
|
| 56 |
return clean_response(raw_response)
|
| 57 |
|
| 58 |
# Gradio interface
|
| 59 |
+
with gr.Blocks() as demo:
|
| 60 |
gr.Markdown("# CPSL Chatbot")
|
| 61 |
+
chat_history = gr.Chatbot()
|
| 62 |
user_input = gr.Textbox(label="Your Message:")
|
| 63 |
send_button = gr.Button("Send")
|
| 64 |
|
| 65 |
def interact(user_message, history):
|
| 66 |
bot_reply = chatbot_response(user_message)
|
| 67 |
+
history.append((user_message, bot_reply))
|
|
|
|
| 68 |
return history, history
|
| 69 |
|
| 70 |
send_button.click(interact, inputs=[user_input, chat_history], outputs=[chat_history, chat_history])
|
| 71 |
|
| 72 |
+
# Note: No launch() call here. Hugging Face will handle this.
|
|
|
|
|
|