Spaces:
Running
on
Zero
Running
on
Zero
Lord-Raven
commited on
Commit
·
f63295c
1
Parent(s):
2b2a5e4
Messing with fastAPI.
Browse files
app.py
CHANGED
|
@@ -4,6 +4,7 @@ import gradio
|
|
| 4 |
import json
|
| 5 |
import onnxruntime
|
| 6 |
import time
|
|
|
|
| 7 |
from transformers import pipeline
|
| 8 |
from fastapi import FastAPI
|
| 9 |
from fastapi.middleware.cors import CORSMiddleware
|
|
@@ -32,7 +33,8 @@ print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
|
| 32 |
model_name = "MoritzLaurer/deberta-v3-base-zeroshot-v2.0"
|
| 33 |
tokenizer_name = "MoritzLaurer/deberta-v3-base-zeroshot-v2.0"
|
| 34 |
|
| 35 |
-
|
|
|
|
| 36 |
# classifier = pipeline(task="zero-shot-classification", model=model_name, tokenizer=tokenizer_name)
|
| 37 |
|
| 38 |
def classify(data_string, request: gradio.Request):
|
|
@@ -42,19 +44,27 @@ def classify(data_string, request: gradio.Request):
|
|
| 42 |
data = json.loads(data_string)
|
| 43 |
|
| 44 |
# Prevent batch suggestion warning in log.
|
| 45 |
-
|
|
|
|
| 46 |
|
| 47 |
# if 'task' in data and data['task'] == 'few_shot_classification':
|
| 48 |
# return few_shot_classification(data)
|
| 49 |
# else:
|
| 50 |
start_time = time.time()
|
| 51 |
-
result =
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
return json.dumps(result)
|
| 54 |
|
|
|
|
|
|
|
|
|
|
| 55 |
@spaces.GPU(duration=3)
|
| 56 |
-
def
|
| 57 |
-
return
|
| 58 |
|
| 59 |
def create_sequences(data):
|
| 60 |
return [data['sequence'] + '\n' + data['hypothesis_template'].format(label) for label in data['candidate_labels']]
|
|
|
|
| 4 |
import json
|
| 5 |
import onnxruntime
|
| 6 |
import time
|
| 7 |
+
from datetime import datetime
|
| 8 |
from transformers import pipeline
|
| 9 |
from fastapi import FastAPI
|
| 10 |
from fastapi.middleware.cors import CORSMiddleware
|
|
|
|
| 33 |
model_name = "MoritzLaurer/deberta-v3-base-zeroshot-v2.0"
|
| 34 |
tokenizer_name = "MoritzLaurer/deberta-v3-base-zeroshot-v2.0"
|
| 35 |
|
| 36 |
+
classifier_cpu = pipeline(task="zero-shot-classification", model=model_name, tokenizer=tokenizer_name)
|
| 37 |
+
classifier_gpu = pipeline(task="zero-shot-classification", model=model_name, tokenizer=tokenizer_name, device="cuda:0")
|
| 38 |
# classifier = pipeline(task="zero-shot-classification", model=model_name, tokenizer=tokenizer_name)
|
| 39 |
|
| 40 |
def classify(data_string, request: gradio.Request):
|
|
|
|
| 44 |
data = json.loads(data_string)
|
| 45 |
|
| 46 |
# Prevent batch suggestion warning in log.
|
| 47 |
+
classifier_cpu.call_count = 0
|
| 48 |
+
classifier_gpu.call_count = 0
|
| 49 |
|
| 50 |
# if 'task' in data and data['task'] == 'few_shot_classification':
|
| 51 |
# return few_shot_classification(data)
|
| 52 |
# else:
|
| 53 |
start_time = time.time()
|
| 54 |
+
result = {}
|
| 55 |
+
if (data['cpu'])
|
| 56 |
+
result = zero_shot_classification_cpu(data)
|
| 57 |
+
else
|
| 58 |
+
result = zero_shot_classification_gpu(data)
|
| 59 |
+
print(f"Classification @ [{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] took {time.time() - start_time}.")
|
| 60 |
return json.dumps(result)
|
| 61 |
|
| 62 |
+
def zero_shot_classification_cpu(data):
|
| 63 |
+
return classifier_cpu(data['sequence'], candidate_labels=data['candidate_labels'], hypothesis_template=data['hypothesis_template'], multi_label=data['multi_label'])
|
| 64 |
+
|
| 65 |
@spaces.GPU(duration=3)
|
| 66 |
+
def zero_shot_classification_gpu(data):
|
| 67 |
+
return classifier_gpu(data['sequence'], candidate_labels=data['candidate_labels'], hypothesis_template=data['hypothesis_template'], multi_label=data['multi_label'])
|
| 68 |
|
| 69 |
def create_sequences(data):
|
| 70 |
return [data['sequence'] + '\n' + data['hypothesis_template'].format(label) for label in data['candidate_labels']]
|