''' import altair as alt import numpy as np import pandas as pd import streamlit as st """ # Welcome to Streamlit! Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:. If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community forums](https://discuss.streamlit.io). In the meantime, below is an example of what you can do with just a few lines of code: """ num_points = st.slider("Number of points in spiral", 1, 10000, 1100) num_turns = st.slider("Number of turns in spiral", 1, 300, 31) indices = np.linspace(0, 1, num_points) theta = 2 * np.pi * num_turns * indices radius = indices x = radius * np.cos(theta) y = radius * np.sin(theta) df = pd.DataFrame({ "x": x, "y": y, "idx": indices, "rand": np.random.randn(num_points), }) st.altair_chart(alt.Chart(df, height=700, width=700) .mark_point(filled=True) .encode( x=alt.X("x", axis=None), y=alt.Y("y", axis=None), color=alt.Color("idx", legend=None, scale=alt.Scale()), size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])), )) ''' import streamlit as st from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import torch.nn.functional as F import os st.set_page_config(page_title="FinBERT Sentiment", layout="centered") st.title("💰 FinBERT: Financial Sentiment Analysis") st.markdown("Модель: `yiyanghkust/finbert-tone` — обучена на финансовых текстах") @st.cache_resource def load_model(): # Установка кастомного пути к кэшу cache_dir = "/tmp/huggingface" os.makedirs(cache_dir, exist_ok=True) tokenizer = AutoTokenizer.from_pretrained("yiyanghkust/finbert-tone", cache_dir=cache_dir) model = AutoModelForSequenceClassification.from_pretrained("yiyanghkust/finbert-tone", cache_dir=cache_dir) return tokenizer, model tokenizer, model = load_model() text = st.text_area("Введите финансовую новость или отчёт:", height=150) if st.button("Анализировать тональность") and text.strip(): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): outputs = model(**inputs) probs = F.softmax(outputs.logits, dim=1).squeeze() labels = ["📉 Negative", "😐 Neutral", "📈 Positive"] for label, prob in zip(labels, probs): st.write(f"**{label}:** {prob.item():.3f}")