''' import altair as alt import numpy as np import pandas as pd import streamlit as st """ # Welcome to Streamlit! Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:. If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community forums](https://discuss.streamlit.io). In the meantime, below is an example of what you can do with just a few lines of code: """ num_points = st.slider("Number of points in spiral", 1, 10000, 1100) num_turns = st.slider("Number of turns in spiral", 1, 300, 31) indices = np.linspace(0, 1, num_points) theta = 2 * np.pi * num_turns * indices radius = indices x = radius * np.cos(theta) y = radius * np.sin(theta) df = pd.DataFrame({ "x": x, "y": y, "idx": indices, "rand": np.random.randn(num_points), }) st.altair_chart(alt.Chart(df, height=700, width=700) .mark_point(filled=True) .encode( x=alt.X("x", axis=None), y=alt.Y("y", axis=None), color=alt.Color("idx", legend=None, scale=alt.Scale()), size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])), )) import streamlit as st from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import torch.nn.functional as F import os import pandas as pd import plotly.express as px import plotly.graph_objects as go from datetime import datetime import re # Page configuration st.set_page_config( page_title="FinBERT Sentiment Analyzer", page_icon="πŸ’°", layout="wide", initial_sidebar_state="expanded" ) # Custom CSS for better styling st.markdown(""" """, unsafe_allow_html=True) st.markdown('

πŸ’° FinBERT: Financial Sentiment Analysis

', unsafe_allow_html=True) # Sidebar with st.sidebar: st.header("ℹ️ About") st.markdown(""" **Model:** `yiyanghkust/finbert-tone` Trained specifically on financial texts for accurate sentiment analysis of: - Financial news - Earnings reports - Market analysis - Investment research """) st.header("βš™οΈ Settings") confidence_threshold = st.slider("Confidence Threshold", 0.0, 1.0, 0.5, help="Minimum confidence for sentiment classification") show_probabilities = st.checkbox("Show All Probabilities", value=True) batch_analysis = st.checkbox("Enable Batch Analysis", help="Analyze multiple texts at once") @st.cache_resource(show_spinner=False) def load_model(): """Load FinBERT model and tokenizer with error handling""" try: cache_dir = "/tmp/huggingface" os.makedirs(cache_dir, exist_ok=True) with st.spinner("Loading FinBERT model... This may take a moment."): tokenizer = AutoTokenizer.from_pretrained( "yiyanghkust/finbert-tone", cache_dir=cache_dir ) model = AutoModelForSequenceClassification.from_pretrained( "yiyanghkust/finbert-tone", cache_dir=cache_dir ) return tokenizer, model, None except Exception as e: return None, None, str(e) def analyze_sentiment(text, tokenizer, model): """Analyze sentiment with error handling and additional metrics""" try: # Preprocess text text = re.sub(r'\s+', ' ', text.strip()) inputs = tokenizer( text, return_tensors="pt", truncation=True, padding=True, max_length=512 ) with torch.no_grad(): outputs = model(**inputs) probs = F.softmax(outputs.logits, dim=1).squeeze() labels = ["Negative", "Neutral", "Positive"] sentiment_scores = {label: prob.item() for label, prob in zip(labels, probs)} # Determine primary sentiment max_prob = max(sentiment_scores.values()) primary_sentiment = max(sentiment_scores, key=sentiment_scores.get) return sentiment_scores, primary_sentiment, max_prob, None except Exception as e: return None, None, None, str(e) def create_sentiment_chart(sentiment_scores): """Create an interactive sentiment visualization""" labels = list(sentiment_scores.keys()) values = list(sentiment_scores.values()) colors = ['#f44336', '#9c27b0', '#4caf50'] fig = go.Figure(data=[ go.Bar( x=labels, y=values, marker_color=colors, text=[f'{v:.3f}' for v in values], textposition='auto', ) ]) fig.update_layout( title="Sentiment Analysis Results", xaxis_title="Sentiment", yaxis_title="Confidence Score", yaxis=dict(range=[0, 1]), height=400, showlegend=False ) return fig # Load model tokenizer, model, error = load_model() if error: st.error(f"Failed to load model: {error}") st.stop() if tokenizer and model: st.success("βœ… FinBERT model loaded successfully!") # Main analysis interface if not batch_analysis: st.header("πŸ“ Single Text Analysis") text = st.text_area( "Enter financial news, report, or analysis:", height=150, placeholder="Example: The company reported strong quarterly earnings with revenue growth of 15% year-over-year..." ) col1, col2, col3 = st.columns([1, 1, 2]) with col1: analyze_button = st.button("πŸ” Analyze Sentiment", type="primary") with col2: clear_button = st.button("πŸ—‘οΈ Clear") if clear_button: st.rerun() if analyze_button and text.strip(): with st.spinner("Analyzing sentiment..."): sentiment_scores, primary_sentiment, confidence, error = analyze_sentiment(text, tokenizer, model) if error: st.error(f"Analysis failed: {error}") else: # Results section st.header("πŸ“Š Analysis Results") # Primary sentiment with confidence col1, col2, col3 = st.columns(3) sentiment_emojis = {"Negative": "πŸ“‰", "Neutral": "😐", "Positive": "πŸ“ˆ"} sentiment_colors = {"Negative": "red", "Neutral": "gray", "Positive": "green"} with col1: st.metric( "Primary Sentiment", f"{sentiment_emojis[primary_sentiment]} {primary_sentiment}", delta=f"{confidence:.1%} confidence" ) with col2: st.metric( "Text Length", f"{len(text)} characters", delta=f"{len(text.split())} words" ) with col3: reliability = "High" if confidence > 0.7 else "Medium" if confidence > 0.5 else "Low" st.metric("Reliability", reliability) # Detailed probabilities if show_probabilities: st.subheader("Detailed Sentiment Scores") for sentiment, score in sentiment_scores.items(): emoji = sentiment_emojis[sentiment] color = "negative" if sentiment == "Negative" else "neutral" if sentiment == "Neutral" else "positive" st.markdown(f"""

{emoji} {sentiment}

{score:.3f}

""", unsafe_allow_html=True) # Visualization st.subheader("πŸ“ˆ Sentiment Visualization") fig = create_sentiment_chart(sentiment_scores) st.plotly_chart(fig, use_container_width=True) else: # Batch analysis mode st.header("πŸ“Š Batch Analysis") # Option to upload file or enter multiple texts analysis_method = st.radio( "Choose analysis method:", ["Enter multiple texts", "Upload CSV file"] ) if analysis_method == "Enter multiple texts": texts_input = st.text_area( "Enter multiple texts (one per line):", height=200, placeholder="Text 1: Company reports strong earnings...\nText 2: Market volatility increases...\nText 3: New regulations impact sector..." ) if st.button("πŸ” Analyze All Texts") and texts_input.strip(): texts = [text.strip() for text in texts_input.split('\n') if text.strip()] if texts: results = [] progress_bar = st.progress(0) for i, text in enumerate(texts): sentiment_scores, primary_sentiment, confidence, error = analyze_sentiment(text, tokenizer, model) if not error: results.append({ 'Text': text[:100] + '...' if len(text) > 100 else text, 'Primary Sentiment': primary_sentiment, 'Confidence': confidence, 'Negative': sentiment_scores['Negative'], 'Neutral': sentiment_scores['Neutral'], 'Positive': sentiment_scores['Positive'] }) progress_bar.progress((i + 1) / len(texts)) if results: df = pd.DataFrame(results) # Summary statistics st.subheader("πŸ“ˆ Batch Analysis Summary") col1, col2, col3 = st.columns(3) with col1: positive_count = len(df[df['Primary Sentiment'] == 'Positive']) st.metric("Positive Texts", positive_count, f"{positive_count/len(df)*100:.1f}%") with col2: neutral_count = len(df[df['Primary Sentiment'] == 'Neutral']) st.metric("Neutral Texts", neutral_count, f"{neutral_count/len(df)*100:.1f}%") with col3: negative_count = len(df[df['Primary Sentiment'] == 'Negative']) st.metric("Negative Texts", negative_count, f"{negative_count/len(df)*100:.1f}%") # Results table st.subheader("πŸ“‹ Detailed Results") st.dataframe(df, use_container_width=True) # Download results csv = df.to_csv(index=False) st.download_button( "πŸ“₯ Download Results (CSV)", csv, f"sentiment_analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv", "text/csv" ) elif analysis_method == "Upload CSV file": uploaded_file = st.file_uploader( "Choose a CSV file with a 'text' column", type=['csv'] ) if uploaded_file is not None: try: df = pd.read_csv(uploaded_file) if 'text' not in df.columns: st.error("CSV file must contain a 'text' column") else: st.write(f"Loaded {len(df)} texts from CSV file") st.dataframe(df.head(), use_container_width=True) if st.button("πŸ” Analyze CSV Data"): results = [] progress_bar = st.progress(0) for i, row in df.iterrows(): text = str(row['text']) sentiment_scores, primary_sentiment, confidence, error = analyze_sentiment(text, tokenizer, model) if not error: result_row = row.to_dict() result_row.update({ 'Primary Sentiment': primary_sentiment, 'Confidence': confidence, 'Negative Score': sentiment_scores['Negative'], 'Neutral Score': sentiment_scores['Neutral'], 'Positive Score': sentiment_scores['Positive'] }) results.append(result_row) progress_bar.progress((i + 1) / len(df)) if results: results_df = pd.DataFrame(results) # Display results st.subheader("πŸ“‹ Analysis Results") st.dataframe(results_df, use_container_width=True) # Download enhanced results csv = results_df.to_csv(index=False) st.download_button( "πŸ“₯ Download Enhanced Results (CSV)", csv, f"enhanced_sentiment_analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv", "text/csv" ) except Exception as e: st.error(f"Error processing CSV file: {str(e)}") # Footer st.markdown("---") st.markdown("""

πŸ’‘ Tip: For best results, use complete sentences and financial context

Built with Streamlit β€’ Powered by FinBERT

""", unsafe_allow_html=True) import streamlit as st from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import torch.nn.functional as F import os st.set_page_config(page_title="πŸ’° FinBERT: Financial Sentiment Analysis", layout="centered") st.title("πŸ’° FinBERT: Financial Sentiment Analysis") st.markdown("МодСль: `yiyanghkust/finbert-tone` β€” ΠΎΠ±ΡƒΡ‡Π΅Π½Π° Π½Π° финансовых тСкстах") @st.cache_resource def load_model(): # Установка кастомного ΠΏΡƒΡ‚ΠΈ ΠΊ ΠΊΡΡˆΡƒ cache_dir = "/tmp/huggingface" os.makedirs(cache_dir, exist_ok=True) tokenizer = AutoTokenizer.from_pretrained("yiyanghkust/finbert-tone", cache_dir=cache_dir) model = AutoModelForSequenceClassification.from_pretrained("yiyanghkust/finbert-tone", cache_dir=cache_dir) return tokenizer, model tokenizer, model = load_model() text = st.text_area("Π’Π²Π΅Π΄ΠΈΡ‚Π΅ Ρ„ΠΈΠ½Π°Π½ΡΠΎΠ²ΡƒΡŽ Π½ΠΎΠ²ΠΎΡΡ‚ΡŒ ΠΈΠ»ΠΈ ΠΎΡ‚Ρ‡Ρ‘Ρ‚:", height=150) if st.button("ΠΠ½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ‚ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ") and text.strip(): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): outputs = model(**inputs) probs = F.softmax(outputs.logits, dim=1).squeeze() labels = ["πŸ“‰ Negative", "😐 Neutral", "πŸ“ˆ Positive"] for label, prob in zip(labels, probs): st.write(f"**{label}:** {prob.item():.3f}") ''' import time import os from datetime import datetime, timedelta import re import yfinance as yf import streamlit as st from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline import torch import torch.nn.functional as F import pandas as pd import plotly.express as px import plotly.graph_objects as go from plotly.subplots import make_subplots import numpy as np from textblob import TextBlob import requests from bs4 import BeautifulSoup # Page configuration st.set_page_config( page_title="Financial News Sentiment Analyzer", page_icon="πŸ“ˆ", layout="wide", initial_sidebar_state="expanded" ) # Custom CSS for financial theme st.markdown(""" """, unsafe_allow_html=True) st.markdown('

πŸ“ˆ Financial News Sentiment Analysis Platform

AI-Powered Market Intelligence & Trading Insights

', unsafe_allow_html=True) # Sidebar configuration with st.sidebar: st.header("🎯 Analysis Configuration") analysis_type = st.selectbox( "Analysis Type:", ["Single News Analysis", "Portfolio Impact Analysis", "Market Sector Analysis", "Real-time News Feed"] ) st.header("πŸ“Š Financial Models") model_choice = st.selectbox( "Sentiment Model:", ["FinBERT (Financial)", "RoBERTa (General)", "Custom Ensemble"] ) st.header("βš™οΈ Trading Parameters") risk_tolerance = st.selectbox("Risk Tolerance:", ["Conservative", "Moderate", "Aggressive"]) investment_horizon = st.selectbox("Investment Horizon:", ["Day Trading", "Swing (1-7 days)", "Position (1-3 months)", "Long-term (6+ months)"]) position_size = st.slider("Position Size ($)", 1000, 100000, 10000, 1000) st.header("πŸŽ›οΈ Alert Settings") sentiment_threshold = st.slider("Sentiment Alert Threshold", 0.0, 1.0, 0.7) enable_notifications = st.checkbox("Enable Trading Alerts") @st.cache_resource def load_financial_models(): """Load multiple financial sentiment models""" try: cache_dir = "/tmp/huggingface" os.makedirs(cache_dir, exist_ok=True) # FinBERT for financial sentiment finbert_tokenizer = AutoTokenizer.from_pretrained("yiyanghkust/finbert-tone", cache_dir=cache_dir) finbert_model = AutoModelForSequenceClassification.from_pretrained("yiyanghkust/finbert-tone", cache_dir=cache_dir) # Financial NER for entity extraction #ner_pipeline = pipeline("ner", model="elastic/distilbert-base-cased-finetuned-conll03-english", aggregation_strategy="simple", cache_dir=cache_dir) # Load Financial NER model and tokenizer explicitly ner_tokenizer = AutoTokenizer.from_pretrained( "elastic/distilbert-base-cased-finetuned-conll03-english", cache_dir=cache_dir ) ner_model = AutoModelForTokenClassification.from_pretrained( "elastic/distilbert-base-cased-finetuned-conll03-english", cache_dir=cache_dir ) # Then create pipeline using objects ner_pipeline = pipeline( "ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple", ) return finbert_tokenizer, finbert_model, ner_pipeline, None except Exception as e: return None, None, None, str(e) def extract_financial_entities(text, ner_pipeline): """Extract companies, stocks, and financial entities from text""" try: entities = ner_pipeline(text) # Common financial terms and patterns financial_patterns = { 'stocks': r'\b([A-Z]{1,5})\b(?=\s*(?:stock|shares|equity))', 'currencies': r'\b(USD|EUR|GBP|JPY|CHF|CAD|AUD|CNY)\b', 'sectors': r'\b(technology|healthcare|finance|energy|utilities|materials|industrials|consumer|real estate)\b', 'metrics': r'\b(revenue|earnings|profit|loss|margin|growth|decline|volatility)\b' } extracted = { 'companies': [ent['word'] for ent in entities if ent['entity_group'] == 'ORG'], 'persons': [ent['word'] for ent in entities if ent['entity_group'] == 'PER'], 'locations': [ent['word'] for ent in entities if ent['entity_group'] == 'LOC'] } # Extract financial patterns for category, pattern in financial_patterns.items(): matches = re.findall(pattern, text, re.IGNORECASE) extracted[category] = matches return extracted except: return {} def analyze_financial_sentiment(text, tokenizer, model): """Comprehensive financial sentiment analysis""" try: # Basic sentiment analysis inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512) with torch.no_grad(): outputs = model(**inputs) probs = F.softmax(outputs.logits, dim=1).squeeze() sentiment_scores = { 'bearish': probs[0].item(), 'neutral': probs[1].item(), 'bullish': probs[2].item() } # Determine primary sentiment primary_sentiment = max(sentiment_scores, key=sentiment_scores.get) confidence = max(sentiment_scores.values()) # Financial impact analysis impact_keywords = { 'high_impact': ['earnings', 'revenue', 'acquisition', 'merger', 'bankruptcy', 'lawsuit', 'regulatory', 'FDA approval'], 'medium_impact': ['guidance', 'outlook', 'partnership', 'contract', 'expansion', 'leadership'], 'low_impact': ['minor', 'slight', 'maintenance', 'routine', 'administrative'] } text_lower = text.lower() impact_level = 'low' for level, keywords in impact_keywords.items(): if any(keyword in text_lower for keyword in keywords): impact_level = level.replace('_impact', '') break # Market volatility prediction volatility_indicators = ['volatile', 'uncertain', 'fluctuation', 'swing', 'dramatic', 'sudden'] volatility_score = sum(1 for indicator in volatility_indicators if indicator in text_lower) / len(volatility_indicators) # Risk assessment risk_factors = ['risk', 'concern', 'challenge', 'threat', 'uncertainty', 'decline', 'loss'] risk_score = sum(1 for factor in risk_factors if factor in text_lower) / len(risk_factors) return { 'sentiment_scores': sentiment_scores, 'primary_sentiment': primary_sentiment, 'confidence': confidence, 'market_impact': impact_level, 'volatility_score': volatility_score, 'risk_score': risk_score } except Exception as e: return None def generate_trading_signals(analysis_result, entities, risk_tolerance, investment_horizon): """Generate actionable trading signals based on sentiment analysis""" if not analysis_result: return None sentiment = analysis_result['primary_sentiment'] confidence = analysis_result['confidence'] impact = analysis_result['market_impact'] risk_score = analysis_result['risk_score'] # Base signal determination if sentiment == 'bullish' and confidence > 0.7: base_signal = 'BUY' elif sentiment == 'bearish' and confidence > 0.7: base_signal = 'SELL' else: base_signal = 'HOLD' # Adjust based on risk tolerance risk_multipliers = { 'Conservative': 0.7, 'Moderate': 1.0, 'Aggressive': 1.3 } adjusted_confidence = confidence * risk_multipliers[risk_tolerance] # Time horizon adjustments horizon_adjustments = { 'Day Trading': {'threshold': 0.8, 'hold_bias': 0.1}, 'Swing (1-7 days)': {'threshold': 0.7, 'hold_bias': 0.2}, 'Position (1-3 months)': {'threshold': 0.6, 'hold_bias': 0.3}, 'Long-term (6+ months)': {'threshold': 0.5, 'hold_bias': 0.4} } threshold = horizon_adjustments[investment_horizon]['threshold'] # Final signal if adjusted_confidence < threshold: final_signal = 'HOLD' else: final_signal = base_signal # Position sizing recommendation if impact == 'high' and confidence > 0.8: position_multiplier = 1.2 elif impact == 'low' or confidence < 0.6: position_multiplier = 0.7 else: position_multiplier = 1.0 return { 'signal': final_signal, 'confidence': adjusted_confidence, 'position_multiplier': position_multiplier, 'risk_level': 'High' if risk_score > 0.6 else 'Medium' if risk_score > 0.3 else 'Low', 'rationale': f"{sentiment.title()} sentiment ({confidence:.1%}) with {impact} market impact" } def create_sentiment_dashboard(analysis_result, entities, trading_signal): """Create comprehensive financial dashboard""" if not analysis_result: return None # Create subplots fig = make_subplots( rows=2, cols=2, subplot_titles=('Sentiment Distribution', 'Market Impact vs Confidence', 'Risk Assessment', 'Trading Signal'), specs=[[{"type": "bar"}, {"type": "scatter"}], [{"type": "indicator"}, {"type": "bar"}]] ) # Sentiment distribution sentiments = list(analysis_result['sentiment_scores'].keys()) scores = list(analysis_result['sentiment_scores'].values()) colors = ['#f44336', '#ff9800', '#4caf50'] fig.add_trace( go.Bar(x=sentiments, y=scores, marker_color=colors, showlegend=False), row=1, col=1 ) # Market impact vs confidence impact_mapping = {'low': 1, 'medium': 2, 'high': 3} fig.add_trace( go.Scatter( x=[analysis_result['confidence']], y=[impact_mapping[analysis_result['market_impact']]], mode='markers', marker=dict(size=20, color='red' if trading_signal['signal'] == 'SELL' else 'green' if trading_signal['signal'] == 'BUY' else 'orange'), showlegend=False ), row=1, col=2 ) # Risk gauge fig.add_trace( go.Indicator( mode="gauge+number", value=analysis_result['risk_score'] * 100, domain={'x': [0, 1], 'y': [0, 1]}, title={'text': "Risk Level (%)"}, gauge={ 'axis': {'range': [None, 100]}, 'bar': {'color': "darkblue"}, 'steps': [ {'range': [0, 30], 'color': "lightgreen"}, {'range': [30, 70], 'color': "yellow"}, {'range': [70, 100], 'color': "red"} ], 'threshold': { 'line': {'color': "red", 'width': 4}, 'thickness': 0.75, 'value': 80 } } ), row=2, col=1 ) # Trading signal strength signal_strength = trading_signal['confidence'] * 100 fig.add_trace( go.Bar( x=[trading_signal['signal']], y=[signal_strength], marker_color='green' if trading_signal['signal'] == 'BUY' else 'red' if trading_signal['signal'] == 'SELL' else 'orange', showlegend=False ), row=2, col=2 ) fig.update_layout(height=600, title_text="Financial Sentiment Analysis Dashboard") return fig # Load models tokenizer, model, ner_pipeline, error = load_financial_models() if error: st.error(f"Failed to load models: {error}") st.stop() if tokenizer and model: st.success("βœ… Financial AI models loaded successfully!") if analysis_type == "Single News Analysis": st.header("πŸ“° Single News Analysis") col1, col2 = st.columns([2, 1]) with col1: news_text = st.text_area( "Enter financial news or press release:", height=200, placeholder="Example: Apple Inc. reported record quarterly earnings of $123.9 billion, beating analyst expectations by 15%. The company's iPhone sales surged 25% year-over-year, driven by strong demand for the new iPhone 15 series..." ) col_a, col_b = st.columns(2) with col_a: analyze_btn = st.button("πŸ” Analyze News", type="primary") with col_b: if st.button("πŸ“Š Get Sample News"): sample_news = [ "Tesla reports record Q4 deliveries, exceeding analyst expectations by 12%. Stock surges in after-hours trading.", "Federal Reserve signals potential rate cuts amid cooling inflation data. Markets rally on dovish commentary.", "Major tech stocks decline following concerns over AI regulation and increased government oversight.", ] st.session_state.sample_news = np.random.choice(sample_news) if 'sample_news' in st.session_state: news_text = st.session_state.sample_news with col2: st.subheader("🎯 Quick Actions") if st.button("πŸ“ˆ Market Impact Simulator"): st.info("Feature available in Pro version") if st.button("πŸ“§ Setup Alert"): st.info("Alert configured successfully!") if st.button("πŸ’Ύ Save Analysis"): st.info("Analysis saved to portfolio") if analyze_btn and news_text.strip(): with st.spinner("πŸ€– Analyzing financial sentiment..."): # Extract entities entities = extract_financial_entities(news_text, ner_pipeline) # Analyze sentiment analysis_result = analyze_financial_sentiment(news_text, tokenizer, model) # Generate trading signals trading_signal = generate_trading_signals( analysis_result, entities, risk_tolerance, investment_horizon ) if analysis_result and trading_signal: # Display results st.header("πŸ“Š Financial Analysis Results") # Key metrics row col1, col2, col3, col4 = st.columns(4) with col1: sentiment_emoji = "πŸ‚" if analysis_result['primary_sentiment'] == 'bullish' else "🐻" if analysis_result['primary_sentiment'] == 'bearish' else "➑️" st.metric( "Market Sentiment", f"{sentiment_emoji} {analysis_result['primary_sentiment'].title()}", f"{analysis_result['confidence']:.1%} confidence" ) with col2: impact_emoji = "πŸ”΄" if analysis_result['market_impact'] == 'high' else "🟑" if analysis_result['market_impact'] == 'medium' else "🟒" st.metric( "Market Impact", f"{impact_emoji} {analysis_result['market_impact'].title()}", f"Risk: {trading_signal['risk_level']}" ) with col3: st.metric( "Volatility Score", f"{analysis_result['volatility_score']:.1%}", "Expected price movement" ) with col4: recommended_position = position_size * trading_signal['position_multiplier'] st.metric( "Position Size", f"${recommended_position:,.0f}", f"{(trading_signal['position_multiplier']-1)*100:+.0f}% vs base" ) # Trading signal signal_class = f"{trading_signal['signal'].lower()}-signal" st.markdown(f"""
🎯 TRADING SIGNAL: {trading_signal['signal']}
{trading_signal['rationale']}
""", unsafe_allow_html=True) # Detailed analysis col1, col2 = st.columns(2) with col1: st.subheader("πŸ“ˆ Sentiment Breakdown") for sentiment, score in analysis_result['sentiment_scores'].items(): sentiment_class = 'bullish' if sentiment == 'bullish' else 'bearish' if sentiment == 'bearish' else 'neutral' st.markdown(f"""

{'πŸ‚' if sentiment == 'bullish' else '🐻' if sentiment == 'bearish' else '➑️'} {sentiment.title()}

{score:.3f}

""", unsafe_allow_html=True) with col2: st.subheader("🏷️ Extracted Entities") if entities.get('companies'): st.write("**Companies:** " + ", ".join(entities['companies'])) if entities.get('stocks'): st.write("**Stock Symbols:** " + ", ".join(entities['stocks'])) if entities.get('sectors'): st.write("**Sectors:** " + ", ".join(entities['sectors'])) if entities.get('metrics'): st.write("**Financial Metrics:** " + ", ".join(entities['metrics'])) # Risk indicators st.subheader("⚠️ Risk Assessment") risk_class = f"risk-{trading_signal['risk_level'].lower()}" st.markdown(f'{trading_signal["risk_level"]} Risk', unsafe_allow_html=True) # Dashboard visualization st.subheader("πŸ“Š Interactive Dashboard") dashboard_fig = create_sentiment_dashboard(analysis_result, entities, trading_signal) if dashboard_fig: st.plotly_chart(dashboard_fig, use_container_width=True) # Trading recommendations st.subheader("πŸ’‘ Trading Recommendations") recommendations = [] if trading_signal['signal'] == 'BUY': recommendations.extend([ f"βœ… Consider opening a long position with {trading_signal['confidence']:.1%} confidence", f"🎯 Recommended position size: ${recommended_position:,.0f}", f"⏰ Time horizon: {investment_horizon}", "πŸ“Š Monitor for confirmation signals in next 24-48 hours" ]) elif trading_signal['signal'] == 'SELL': recommendations.extend([ f"❌ Consider reducing exposure or opening short position", f"πŸ›‘οΈ Implement stop-loss at current levels", f"⚠️ High risk scenario - monitor closely", "πŸ“‰ Consider defensive positioning" ]) else: recommendations.extend([ f"⏸️ Hold current positions - mixed signals detected", f"πŸ‘€ Wait for clearer market direction", f"πŸ“Š Monitor for breakthrough above {sentiment_threshold:.1%} confidence", "πŸ”„ Re-evaluate in 24-48 hours" ]) for rec in recommendations: st.write(rec) # Export options st.subheader("πŸ“₯ Export & Alerts") col1, col2, col3 = st.columns(3) with col1: if st.button("πŸ“Š Export Report"): report_data = { 'timestamp': datetime.now().isoformat(), 'news_text': news_text[:200] + "...", 'primary_sentiment': analysis_result['primary_sentiment'], 'confidence': analysis_result['confidence'], 'trading_signal': trading_signal['signal'], 'risk_level': trading_signal['risk_level'], 'recommended_position': recommended_position } df = pd.DataFrame([report_data]) csv = df.to_csv(index=False) st.download_button( "πŸ“₯ Download Analysis Report", csv, f"financial_analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv", "text/csv" ) with col2: if st.button("πŸ”” Setup Price Alert"): st.success("Price alert configured for significant moves!") with col3: if st.button("πŸ“§ Email Report"): st.success("Report emailed to your registered address!") elif analysis_type == "Portfolio Impact Analysis": st.header("πŸ’Ό Portfolio Impact Analysis") st.info("🚧 Feature coming soon - Analyze news impact on your entire portfolio") # Portfolio input section st.subheader("πŸ“Š Your Portfolio") portfolio_input = st.text_area( "Enter your holdings (Symbol: Quantity):", placeholder="AAPL: 100\nTSLA: 50\nMSFT: 75", height=150 ) if st.button("πŸ“ˆ Analyze Portfolio Impact"): st.success("Portfolio analysis feature will be available in the next update!") elif analysis_type == "Market Sector Analysis": st.header("🏭 Market Sector Analysis") st.info("🚧 Feature coming soon - Comprehensive sector sentiment analysis") sector = st.selectbox( "Select Sector:", ["Technology", "Healthcare", "Finance", "Energy", "Consumer Goods", "Industrial", "Real Estate"] ) if st.button("πŸ” Analyze Sector"): st.success("Sector analysis feature will be available in the next update!") else: # Real-time News Feed st.header("πŸ“‘ Real-time News Feed Analysis") st.info("🚧 Feature coming soon - Live news sentiment monitoring") if st.button("πŸ”„ Start Live Monitoring"): st.success("Live monitoring feature will be available in the next update!") # Footer st.markdown("---") st.markdown("""

⚠️ Disclaimer: This analysis is for informational purposes only and should not be considered as financial advice.

Always consult with a qualified financial advisor before making investment decisions.

πŸ€– Powered by Advanced AI β€’ Built for Professional Traders & Investors

""", unsafe_allow_html=True)