Spaces:
Running
Running
File size: 19,186 Bytes
fd61fe5 d21b475 fd61fe5 4ad9545 fd61fe5 d5fae5d 6c7edb1 fd61fe5 d5fae5d fd61fe5 d5fae5d fd61fe5 d5fae5d 201a15b f995c73 fd61fe5 6c7edb1 fd61fe5 d5fae5d fd61fe5 9bc7d09 fea47b5 d5fae5d 7931de8 d5fae5d fd61fe5 c8da5ca fd61fe5 05f32bb 1b20ea7 05f32bb fd61fe5 6c7edb1 fd61fe5 d5fae5d fd61fe5 05f32bb d5fae5d fd61fe5 d5fae5d fd61fe5 d5fae5d fd61fe5 d5fae5d fd61fe5 6f2bedb fd61fe5 37fbd5e fd61fe5 8ea51a7 fd61fe5 7a1c3a3 fd61fe5 2bce9b9 fd61fe5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
import gradio as gr
import os
import csv
import numpy as np
import scipy.io.wavfile as wavfile
css = """
.gradio-container input::placeholder,
.gradio-container textarea::placeholder {
color: #333333 !important;
}
code {
background-color: #ffde9f;
padding: 2px 4px;
border-radius: 3px;
}
#settings-accordion summary {
justify-content: center;
}
.examples-holder > .label {
color: #b45309 !important;
font-weight: 600;
}
"""
def load_examples(csv_path):
examples = []
if not os.path.exists(csv_path):
print(f"Warning: Examples file not found at {csv_path}")
return examples
try:
with open(csv_path, 'r', encoding='utf-8') as f:
reader = csv.reader(f, delimiter='|')
for row in reader:
if len(row) >= 2:
text = row[0].strip()
audio_path = row[1].strip()
# Handle temperature (third column)
temperature = 0.7 # Default temperature
if len(row) >= 3:
try:
temp_str = row[2].strip()
if temp_str and temp_str.lower() != 'none':
temperature = float(temp_str)
# Clamp temperature to valid range
temperature = max(0.0, min(1.3, temperature))
except (ValueError, TypeError):
print(f"Warning: Invalid temperature value '{row[2]}', using default 0.7")
temperature = 0.7
# Handle chained longform (fourth column)
use_chained = False # Default to False
if len(row) >= 4:
chained_str = row[3].strip().lower()
if chained_str in ['true', '1', 'yes', 'on']:
use_chained = True
elif chained_str in ['false', '0', 'no', 'off', 'none', '']:
use_chained = False
else:
print(f"Warning: Invalid chained longform value '{row[3]}', using default False")
use_chained = False
# Handle pre-generated audio path (fifth column)
pregenerated_audio = None
if len(row) >= 5:
pregenerated_path = row[4].strip()
if pregenerated_path and pregenerated_path.lower() != "none":
if not os.path.isabs(pregenerated_path):
base_dir = os.path.dirname(csv_path)
pregenerated_path = os.path.join(base_dir, pregenerated_path)
if os.path.exists(pregenerated_path):
pregenerated_audio = pregenerated_path
print(f"Found pre-generated audio: {pregenerated_path}")
else:
print(f"Warning: Pre-generated audio file not found: {pregenerated_path}")
if audio_path.lower() == "none":
audio_path = None
elif audio_path and not os.path.isabs(audio_path):
base_dir = os.path.dirname(csv_path)
audio_path = os.path.join(base_dir, audio_path)
if not os.path.exists(audio_path):
print(f"Warning: Audio file not found: {audio_path}")
audio_path = None
examples.append([text, audio_path, temperature, use_chained, pregenerated_audio])
print(f"Added example {len(examples)}: text={text[:30]}..., pregenerated={pregenerated_audio}")
except Exception as e:
print(f"Error loading examples: {e}")
return examples
def run_generation_pipeline_client(*args):
# Demo is closed - return error message
return None, "Status: デモは終了しました。生成例をご覧ください。/ Demo has been closed. Please check the pre-generated examples."
# Load examples
examples_csv_path = "./samples.csv" # Adjust path as needed for client side
example_list = load_examples(examples_csv_path)
# Prepare examples for gr.Examples - only first 4 columns for input
example_inputs = [ex[:4] for ex in example_list]
# Create Gradio interface
with gr.Blocks(theme="Respair/Shiki@9.1.0", css=css) as demo:
gr.Markdown('<h1 style="text-align: center; width: 100%; display: block;">🌸 Takane</h1>')
with gr.Tabs() as tabs:
# Notice tab (default first tab)
with gr.TabItem("お知らせ", id=0):
gr.HTML("""
<div style="background-color: rgba(255, 255, 255, 0.025); padding: 30px; border-radius: 12px; backdrop-filter: blur(10px); max-width: 100%; box-shadow: 0 4px 6px rgba(0,0,0,0.1);">
<h2 style="color: #000000; margin-bottom: 20px; font-size: 28px;">お知らせ</h2>
<p style="color: #1a1a1a; font-weight: 500; line-height: 1.8; margin-bottom: 20px; font-size: 16px;">
この短い間に、多くの方に『高音』を試してくださり、大変光栄に思います!<br>
残念ながらこのデモは、数万人が利用するような実際の製品ではなく、あくまで技術的に何が可能かを示すためのものです。サーバーへの大きな負担、そして声優の方々への潜在的な悪用(話者IDがマッピングされているらしい?)を防ぐため、今はデモを停止することにしました。
</p>
<p style="color: #1a1a1a; font-weight: 500; line-height: 1.8; margin-bottom: 20px; font-size: 16px;">
Read Meタブでも記載した通り、モデル自体を公開したり、倫理的な理由によりAPIを販売する予定もありません。ただし、日本でこの分野を前進させるために、必要な支援やパートナーを見つけられればと願っています。音声合成に限らず、私が本当に楽しんでいる分野ですので、もしどなたかご存知でしたら、ぜひお声がけください!
</p>
<p style="color: #1a1a1a; font-weight: 500; line-height: 1.8; margin-bottom: 20px; font-size: 16px;">
ご理解いただき、ありがとうございます。楽しんでいただけていれば幸いです。
</p>
<p style="color: #1a1a1a; font-weight: 500; line-height: 1.8; margin-bottom: 20px; font-size: 16px;">
もし私の活動や音声・ASR etc. などと言うフィールドにご興味があれば、今後もまた何か楽しいことをするかもしれませんので、<a href="https://x.com/MystiqCaleid" target="_blank" style="color: #1d4ed8; text-decoration: underline;">Twitter | X</a>でフォローしていただけると嬉しいです!
</p>
<p style="color: #1a1a1a; font-weight: 500; line-height: 1.8; margin-bottom: 20px; font-size: 16px;">
デモをテストできなかった方は、ぜひExamplesタブで生成済みの例をご覧ください。(サンプル自体をクリックすると、事前に生成された例がメインタブに読み込まれます。)
</p>
<div style="margin-top: 40px; padding-top: 20px; border-top: 1px solid rgba(0,0,0,0.1);">
<p style="color: #666; font-size: 14px; text-align: center;">
🌸 Well boys, party is over!
</p>
</div>
</div>
""")
with gr.TabItem("Speech Generation"):
with gr.Row():
with gr.Column(scale=2):
text_input = gr.Textbox(
label="Text to Synthesize",
lines=5,
value="<spk_1146> はいはい、それでは、チャンネル登録よろしくお願いしまーす。じゃあみんな、また明日ねー、ばいばーい。"
)
# Settings and Generate button
with gr.Row(equal_height=False):
with gr.Accordion("----------------------------------⭐ 🛠️ ⭐", open=False, label="_"):
turbo_checkbox = gr.Checkbox(
label="⚡ Turbo Mode (Fast generation, single candidate)",
value=False
)
num_candidates_slider = gr.Slider(
label="Number of Candidates",
minimum=1,
maximum=10,
value=5,
step=1
)
cfg_scale_slider = gr.Slider(
label="CFG Scale",
minimum=1.0,
maximum=3.0,
value=1.4,
step=0.1
)
top_k_slider = gr.Slider(
label="Top K",
minimum=10,
maximum=100,
value=55,
step=5
)
temperature_slider = gr.Slider(
label="Temperature (below 0.6 can break)",
minimum=0.0,
maximum=1.3,
value=0.7,
step=0.1
)
seed_slider = gr.Slider(
label="Seed (use -1 for random)",
minimum=-1,
maximum=2700000000,
value=2687110803,
step=1
)
chained_longform_checkbox = gr.Checkbox(
label="Use Chained Longform (Sequential conditioning for consistency)",
value=False
)
audio_prompt_input = gr.Audio(
label="Audio Prompt (Optional - オプション) [Max 10 seconds / 最大10秒]",
sources=["upload", "microphone"],
type="numpy"
)
# Turbo mode event handler
def toggle_turbo(turbo_enabled):
if turbo_enabled:
return 1, 1.0 # num_candidates=1, temperature=1.0
else:
return 5, 0.7 # default values
turbo_checkbox.change(
fn=toggle_turbo,
inputs=[turbo_checkbox],
outputs=[num_candidates_slider, temperature_slider]
)
with gr.Column(scale=1):
generate_button = gr.Button("Generate", variant="primary")
with gr.Column(scale=1):
status_output = gr.Textbox(label="Status", interactive=False)
audio_output = gr.Audio(label="Generated Speech", interactive=False, show_download_button=True)
# Event handler
generate_button.click(
fn=run_generation_pipeline_client,
inputs=[
text_input,
audio_prompt_input,
num_candidates_slider,
cfg_scale_slider,
top_k_slider,
temperature_slider,
chained_longform_checkbox,
seed_slider
],
outputs=[audio_output, status_output],
concurrency_limit=4 # Limit concurrent requests
)
with gr.TabItem("Examples"):
if example_list:
gr.Markdown("### Sample Text and Audio Prompts")
gr.Markdown("Click on any example below to load it into the Speech Generation tab")
gr.Markdown("*Note: Pre-generated audio will be loaded automatically*")
# Function to load example with pre-generated audio
def load_example_fn(text, audio, temp, chained):
"""Load example and its pre-generated audio"""
# Find the matching example in the full list
for ex in example_list:
if ex[0] == text: # Match on text since it's unique
pregenerated_path = ex[4] if len(ex) > 4 else None
if pregenerated_path and os.path.exists(pregenerated_path):
try:
sample_rate, audio_data = wavfile.read(pregenerated_path)
status = "Status: Pre-generated example loaded / 生成済みの例を読み込みました"
return text, audio, temp, chained, (sample_rate, audio_data), status
except Exception as e:
return text, audio, temp, chained, None, f"Status: Error loading audio: {str(e)}"
else:
return text, audio, temp, chained, None, "Status: No pre-generated audio available"
return text, audio, temp, chained, None, "Status: Example loaded"
gr.Examples(
examples=example_inputs,
inputs=[text_input, audio_prompt_input, temperature_slider, chained_longform_checkbox],
outputs=[text_input, audio_prompt_input, temperature_slider, chained_longform_checkbox, audio_output, status_output],
fn=load_example_fn,
label="Click to load an example",
cache_examples=False,
run_on_click=True
)
else:
gr.Markdown("### No examples available")
gr.Markdown("Examples will appear here when they are configured.")
with gr.TabItem("Read Me"):
gr.HTML("""
<div style="background-color: rgba(255, 255, 255, 0.025); padding: 30px; border-radius: 12px; backdrop-filter: blur(10px); max-width: 100%; box-shadow: 0 4px 6px rgba(0,0,0,0.1);">
<h2 style="color: #000000; margin-bottom: 20px; font-size: 28px;">About Takane</h2>
<p style="color: #1a1a1a; font-weight: 500; line-height: 1.8; margin-bottom: 20px; font-size: 16px;">
Takane is a frontier Japanese-only speech synthesis network that was trained on tens of thousands of high quality data to autoregressively generate highly compressed audio codes.
This network is powered by Kanadec, the world's only 44.1 kHz - 25 frame rate speech tokenizer which utilizes semantic and acoustic distillation to generate audio tokens as fast as possible.
</p>
<p style="color: #1a1a1a; font-weight: 500; line-height: 1.8; margin-bottom: 20px; font-size: 16px;">
There are two checkpoints in this demo, one of them utilizes a custom version of Rope to manipulate duration which is seldom seen in autoregressive settings. Please treat it as a proof of concept as its outputs are not very reliable. I'll include it to show that it can work to some levels and can be expanded upon.
Both checkpoints have been fine-tuned on a subset of the dataset with only speaker tags. This will allow us to generate high quality samples without relying on audio prompts or dealing with random speaker attributes, but at the cost of tanking the zero-shot faithfulness of the model.
</p>
<p style="color: #1a1a1a; font-weight: 500; line-height: 1.8; margin-bottom: 20px; font-size: 16px;">
Takane also comes with an Anti-Hallucination Algorithm (AHA) that generates a few candidates in parallel and automatically returns the best one at the cost of introducing a small overhead.
If you need the fastest response time possible, feel free to enable the Turbo mode. It will disable AHA and tweak the parameters internally to produce samples as fast as 2-3 seconds (though due to an influx of users coming in, you probably will be qeued and have to wait!)
</p>
<p style="color: #1a1a1a; font-weight: 500; line-height: 1.8; margin-bottom: 20px; font-size: 16px;">
There's no plan to release this model or even monetize it. this is just a tech demo, therefore I am not accountable for what users may generate.
</p>
<p style="color: #1a1a1a; font-weight: 500; line-height: 1.8; margin-bottom: 20px; font-size: 16px;">
If you're not using an audio prompt or a speaker tag, or even if you do, you find the later sentences to be too different, then in that case you may want to enable the <code>Chained mode</code>, which will sequentially condition each output to ensure speaker consistency.
</p>
<h3 style="color: #000000; margin-top: 30px; margin-bottom: 15px; font-size: 20px;">Summary of Technical Properties:</h3>
<ul style="color: #1a1a1a; font-weight: 500; line-height: 1.8; font-size: 15px;">
<li style="margin: 8px 0;">Encoder-Decoder fully autoregressive Transformer</li>
<li style="margin: 8px 0;">Powered by Kanadec (44.1 kHz - 25 codes per second)</li>
<li style="margin: 8px 0;">500M parameters</li>
<li style="margin: 8px 0;">Tens of thousands of anime-esque data, everyday regular Japanese is not supported</li>
<li style="margin: 8px 0;">Experimental support for duration-controllable synthesis</li>
</ul>
<div style="margin-top: 40px; padding-top: 20px; border-top: 1px solid rgba(0,0,0,0.1);">
<p style="color: #666; font-size: 14px; text-align: center;">
🌸 Takane - Advanced Japanese Text-to-Speech System
</p>
</div>
</div>
""")
if __name__ == "__main__":
demo.queue(api_open=False, max_size=15).launch(show_api=False, share=True) |