Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,21 +1,32 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
from PyPDF2 import PdfReader
|
| 5 |
import google.generativeai as genai
|
| 6 |
import os
|
| 7 |
from langsmith import Client
|
| 8 |
from ragas.metrics import faithfulness, answer_relevancy, context_relevancy
|
| 9 |
|
|
|
|
|
|
|
|
|
|
| 10 |
# 加載模型
|
| 11 |
-
openelm_model = AutoModelForCausalLM.from_pretrained(
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
# Gemini API
|
| 15 |
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
| 16 |
genai.configure(api_key=GOOGLE_API_KEY)
|
| 17 |
|
| 18 |
-
# LangSmith
|
| 19 |
os.environ["LANGCHAIN_API_KEY"] = "your_langchain_api_key"
|
| 20 |
os.environ["LANGCHAIN_TRACING_V2"] = "true"
|
| 21 |
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
|
|
@@ -35,11 +46,11 @@ def gemini_generate(prompt, max_tokens):
|
|
| 35 |
return response.text
|
| 36 |
|
| 37 |
def openelm_generate(prompt, max_tokens):
|
| 38 |
-
|
| 39 |
output_ids = openelm_model.generate(
|
| 40 |
-
input_ids,
|
| 41 |
max_length=max_tokens,
|
| 42 |
-
pad_token_id=
|
| 43 |
)
|
| 44 |
return openelm_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 45 |
|
|
@@ -56,21 +67,42 @@ def process_query(pdf_file, llm_choice, query, max_tokens, api_key):
|
|
| 56 |
GOOGLE_API_KEY = api_key
|
| 57 |
genai.configure(api_key=GOOGLE_API_KEY)
|
| 58 |
|
|
|
|
| 59 |
pdf_path = pdf_file.name
|
| 60 |
context = extract_text_from_pdf(pdf_path)
|
| 61 |
|
|
|
|
| 62 |
if llm_choice == "Gemini":
|
| 63 |
response = gemini_generate(f"上下文: {context}\n問題: {query}", max_tokens)
|
| 64 |
else: # OpenELM
|
| 65 |
response = openelm_generate(f"上下文: {context}\n問題: {query}", max_tokens)
|
| 66 |
|
|
|
|
| 67 |
faith_score, ans_rel_score, ctx_rel_score = evaluate_response(response, context, query)
|
| 68 |
|
| 69 |
return response, faith_score, ans_rel_score, ctx_rel_score
|
| 70 |
except Exception as e:
|
| 71 |
-
return str(e), 0, 0, 0
|
| 72 |
|
| 73 |
-
# Gradio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
if __name__ == "__main__":
|
| 76 |
-
iface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
from PyPDF2 import PdfReader
|
| 5 |
import google.generativeai as genai
|
| 6 |
import os
|
| 7 |
from langsmith import Client
|
| 8 |
from ragas.metrics import faithfulness, answer_relevancy, context_relevancy
|
| 9 |
|
| 10 |
+
# 更新的 langchain_community 導入
|
| 11 |
+
from langchain_community.llms import OpenAI # 示例導入
|
| 12 |
+
|
| 13 |
# 加載模型
|
| 14 |
+
openelm_model = AutoModelForCausalLM.from_pretrained(
|
| 15 |
+
"apple/OpenELM-270M",
|
| 16 |
+
trust_remote_code=True
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
# 加載 tokenizer,確保 trust_remote_code=True
|
| 20 |
+
openelm_tokenizer = AutoTokenizer.from_pretrained(
|
| 21 |
+
"apple/OpenELM-270M",
|
| 22 |
+
trust_remote_code=True
|
| 23 |
+
)
|
| 24 |
|
| 25 |
+
# 設置 Gemini API
|
| 26 |
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
| 27 |
genai.configure(api_key=GOOGLE_API_KEY)
|
| 28 |
|
| 29 |
+
# 設置 LangSmith
|
| 30 |
os.environ["LANGCHAIN_API_KEY"] = "your_langchain_api_key"
|
| 31 |
os.environ["LANGCHAIN_TRACING_V2"] = "true"
|
| 32 |
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
|
|
|
|
| 46 |
return response.text
|
| 47 |
|
| 48 |
def openelm_generate(prompt, max_tokens):
|
| 49 |
+
tokenized_prompt = openelm_tokenizer(prompt, return_tensors="pt")
|
| 50 |
output_ids = openelm_model.generate(
|
| 51 |
+
tokenized_prompt["input_ids"],
|
| 52 |
max_length=max_tokens,
|
| 53 |
+
pad_token_id=0,
|
| 54 |
)
|
| 55 |
return openelm_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 56 |
|
|
|
|
| 67 |
GOOGLE_API_KEY = api_key
|
| 68 |
genai.configure(api_key=GOOGLE_API_KEY)
|
| 69 |
|
| 70 |
+
# 從 PDF 提取文本
|
| 71 |
pdf_path = pdf_file.name
|
| 72 |
context = extract_text_from_pdf(pdf_path)
|
| 73 |
|
| 74 |
+
# 根據選擇的 LLM 生成回應
|
| 75 |
if llm_choice == "Gemini":
|
| 76 |
response = gemini_generate(f"上下文: {context}\n問題: {query}", max_tokens)
|
| 77 |
else: # OpenELM
|
| 78 |
response = openelm_generate(f"上下文: {context}\n問題: {query}", max_tokens)
|
| 79 |
|
| 80 |
+
# 評估回應
|
| 81 |
faith_score, ans_rel_score, ctx_rel_score = evaluate_response(response, context, query)
|
| 82 |
|
| 83 |
return response, faith_score, ans_rel_score, ctx_rel_score
|
| 84 |
except Exception as e:
|
| 85 |
+
return str(e), 0, 0, 0 # 返回錯誤消息和零分數
|
| 86 |
|
| 87 |
+
# Gradio 介面
|
| 88 |
+
iface = gr.Interface(
|
| 89 |
+
fn=process_query,
|
| 90 |
+
inputs=[
|
| 91 |
+
gr.File(label="上傳 PDF"),
|
| 92 |
+
gr.Dropdown(["Gemini", "OpenELM"], label="選擇 LLM"),
|
| 93 |
+
gr.Textbox(label="輸入您的問題"),
|
| 94 |
+
gr.Slider(minimum=50, maximum=1000, step=50, label="最大令牌數"),
|
| 95 |
+
gr.Textbox(label="Gemini API 金鑰 (可選)", type="password")
|
| 96 |
+
],
|
| 97 |
+
outputs=[
|
| 98 |
+
gr.Textbox(label="生成的答案"),
|
| 99 |
+
gr.Number(label="真實性得分"),
|
| 100 |
+
gr.Number(label="答案相關性得分"),
|
| 101 |
+
gr.Number(label="上下文相關性得分")
|
| 102 |
+
],
|
| 103 |
+
title="多模型 LLM 查詢介面,支持 PDF 上下文",
|
| 104 |
+
description="上傳 PDF,選擇 LLM,並提出問題。回應將使用 RAGAS 指標進行評估。"
|
| 105 |
+
)
|
| 106 |
|
| 107 |
if __name__ == "__main__":
|
| 108 |
+
iface.launch()
|