File size: 7,433 Bytes
01504c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
"""Hardware configuration for local CUDA and HuggingFace Spaces GPU selection.

This module provides:
- Hardware mode selection (local CUDA vs Spaces GPU)
- Persistent configuration via JSON file
- HuggingFace Spaces GPU hardware options

Spaces GPU pricing (as of Dec 2024):
- ZeroGPU (H200): Free (PRO subscribers), dynamic allocation
- T4-small: $0.40/hr, 16GB VRAM
- T4-medium: $0.60/hr, 16GB VRAM
- L4x1: $0.80/hr, 24GB VRAM
- L4x4: $3.80/hr, 96GB VRAM
- L40Sx1: $1.80/hr, 48GB VRAM
- L40Sx4: $8.30/hr, 192GB VRAM
- A10G-small: $1.00/hr, 24GB VRAM
- A10G-large: $1.50/hr, 24GB VRAM
- A100-large: $2.50/hr, 80GB VRAM
"""

from __future__ import annotations

import json
import os
from dataclasses import dataclass, field
from pathlib import Path
from typing import Final, Literal

# Hardware mode: local CUDA or HuggingFace Spaces
HardwareMode = Literal["local", "spaces"]

# Spaces hardware flavors (from HF docs)
SpacesHardware = Literal[
    "zero-gpu",      # ZeroGPU (H200, dynamic, free for PRO)
    "t4-small",      # Nvidia T4 small
    "t4-medium",     # Nvidia T4 medium
    "l4x1",          # 1x Nvidia L4
    "l4x4",          # 4x Nvidia L4
    "l40s-x1",       # 1x Nvidia L40S
    "l40s-x4",       # 4x Nvidia L40S
    "a10g-small",    # Nvidia A10G small
    "a10g-large",    # Nvidia A10G large
    "a10g-largex2",  # 2x Nvidia A10G large
    "a10g-largex4",  # 4x Nvidia A10G large
    "a100-large",    # Nvidia A100 large (80GB)
]

# Hardware specs for display
SPACES_HARDWARE_SPECS: Final[dict[str, dict]] = {
    "zero-gpu": {
        "name": "ZeroGPU (H200)",
        "vram": "70GB",
        "price": "Free (PRO)",
        "description": "Dynamic allocation, best for demos",
    },
    "t4-small": {
        "name": "Nvidia T4 small",
        "vram": "16GB",
        "price": "$0.40/hr",
        "description": "4 vCPU, 15GB RAM",
    },
    "t4-medium": {
        "name": "Nvidia T4 medium",
        "vram": "16GB",
        "price": "$0.60/hr",
        "description": "8 vCPU, 30GB RAM",
    },
    "l4x1": {
        "name": "1x Nvidia L4",
        "vram": "24GB",
        "price": "$0.80/hr",
        "description": "8 vCPU, 30GB RAM",
    },
    "l4x4": {
        "name": "4x Nvidia L4",
        "vram": "96GB",
        "price": "$3.80/hr",
        "description": "48 vCPU, 186GB RAM",
    },
    "l40s-x1": {
        "name": "1x Nvidia L40S",
        "vram": "48GB",
        "price": "$1.80/hr",
        "description": "8 vCPU, 62GB RAM",
    },
    "l40s-x4": {
        "name": "4x Nvidia L40S",
        "vram": "192GB",
        "price": "$8.30/hr",
        "description": "48 vCPU, 382GB RAM",
    },
    "a10g-small": {
        "name": "Nvidia A10G small",
        "vram": "24GB",
        "price": "$1.00/hr",
        "description": "4 vCPU, 14GB RAM",
    },
    "a10g-large": {
        "name": "Nvidia A10G large",
        "vram": "24GB",
        "price": "$1.50/hr",
        "description": "12 vCPU, 46GB RAM",
    },
    "a10g-largex2": {
        "name": "2x Nvidia A10G large",
        "vram": "48GB",
        "price": "$3.00/hr",
        "description": "24 vCPU, 92GB RAM",
    },
    "a10g-largex4": {
        "name": "4x Nvidia A10G large",
        "vram": "96GB",
        "price": "$5.00/hr",
        "description": "48 vCPU, 184GB RAM",
    },
    "a100-large": {
        "name": "Nvidia A100 large",
        "vram": "80GB",
        "price": "$2.50/hr",
        "description": "12 vCPU, 142GB RAM, best for large models",
    },
}

CONFIG_FILE: Final[Path] = Path(__file__).resolve().parent / ".hardware_config.json"


@dataclass
class HardwareConfig:
    """Persistent hardware configuration."""
    
    mode: HardwareMode = "local"
    spaces_hardware: SpacesHardware = "zero-gpu"
    spaces_duration: int = 180  # seconds for @spaces.GPU decorator
    local_device: str = "auto"  # auto, cuda, cpu, mps
    keep_model_on_device: bool = True
    
    def to_dict(self) -> dict:
        return {
            "mode": self.mode,
            "spaces_hardware": self.spaces_hardware,
            "spaces_duration": self.spaces_duration,
            "local_device": self.local_device,
            "keep_model_on_device": self.keep_model_on_device,
        }
    
    @classmethod
    def from_dict(cls, data: dict) -> "HardwareConfig":
        return cls(
            mode=data.get("mode", "local"),
            spaces_hardware=data.get("spaces_hardware", "zero-gpu"),
            spaces_duration=data.get("spaces_duration", 180),
            local_device=data.get("local_device", "auto"),
            keep_model_on_device=data.get("keep_model_on_device", True),
        )
    
    def save(self, path: Path = CONFIG_FILE) -> None:
        """Save configuration to JSON file."""
        path.write_text(json.dumps(self.to_dict(), indent=2))
    
    @classmethod
    def load(cls, path: Path = CONFIG_FILE) -> "HardwareConfig":
        """Load configuration from JSON file, or return defaults."""
        if path.exists():
            try:
                data = json.loads(path.read_text())
                return cls.from_dict(data)
            except Exception:
                pass
        return cls()


def get_hardware_choices() -> list[tuple[str, str]]:
    """Get hardware choices for Gradio dropdown.
    
    Returns list of (display_name, value) tuples.
    """
    choices = [
        ("🖥️ Local CUDA (auto-detect)", "local"),
    ]
    
    for hw_id, spec in SPACES_HARDWARE_SPECS.items():
        label = f"☁️ {spec['name']} - {spec['vram']} VRAM ({spec['price']})"
        choices.append((label, f"spaces:{hw_id}"))
    
    return choices


def parse_hardware_choice(choice: str) -> tuple[HardwareMode, SpacesHardware | None]:
    """Parse hardware choice string into mode and hardware type."""
    if choice == "local":
        return "local", None
    elif choice.startswith("spaces:"):
        hw = choice.replace("spaces:", "")
        return "spaces", hw  # type: ignore
    else:
        return "local", None


def is_running_on_spaces() -> bool:
    """Check if we're running on HuggingFace Spaces."""
    return os.getenv("SPACE_ID") is not None


def get_spaces_module():
    """Import and return the spaces module if available."""
    try:
        import spaces
        return spaces
    except ImportError:
        return None


# Global config instance
_config: HardwareConfig | None = None


def get_config() -> HardwareConfig:
    """Get the global hardware configuration."""
    global _config
    if _config is None:
        _config = HardwareConfig.load()
    return _config


def update_config(
    mode: HardwareMode | None = None,
    spaces_hardware: SpacesHardware | None = None,
    spaces_duration: int | None = None,
    local_device: str | None = None,
    keep_model_on_device: bool | None = None,
    save: bool = True,
) -> HardwareConfig:
    """Update and optionally save the hardware configuration."""
    global _config
    config = get_config()
    
    if mode is not None:
        config.mode = mode
    if spaces_hardware is not None:
        config.spaces_hardware = spaces_hardware
    if spaces_duration is not None:
        config.spaces_duration = spaces_duration
    if local_device is not None:
        config.local_device = local_device
    if keep_model_on_device is not None:
        config.keep_model_on_device = keep_model_on_device
    
    if save:
        config.save()
    
    _config = config
    return config