Spaces:
Sleeping
Sleeping
File size: 6,802 Bytes
01504c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
"""SHARP MCP Server for programmatic access to 3D Gaussian prediction.
Run standalone:
uv run python mcp_server.py
Or integrate with MCP clients via stdio transport.
"""
from __future__ import annotations
import json
import os
from pathlib import Path
from typing import Literal
import torch
from mcp.server.fastmcp import FastMCP
from model_utils import (
DEFAULT_OUTPUTS_DIR,
ModelWrapper,
TrajectoryType,
get_global_model,
)
MCP_PORT: int = int(os.getenv("SHARP_MCP_PORT", "49201"))
mcp = FastMCP(
"sharp",
description="SHARP: Single-image 3D Gaussian scene prediction",
)
# -----------------------------------------------------------------------------
# Tools
# -----------------------------------------------------------------------------
@mcp.tool()
def sharp_predict(
image_path: str,
render_video: bool = True,
trajectory_type: TrajectoryType = "rotate_forward",
num_frames: int = 60,
fps: int = 30,
output_long_side: int | None = None,
) -> dict:
"""Predict 3D Gaussians from a single image.
Args:
image_path: Absolute path to input image (jpg/png/webp).
render_video: Whether to render a camera trajectory video (requires CUDA).
trajectory_type: Camera trajectory type (swipe/shake/rotate/rotate_forward).
num_frames: Number of frames for video rendering.
fps: Frames per second for video.
output_long_side: Output resolution (longest side). None = match input.
Returns:
dict with keys:
- ply_path: Path to exported PLY file
- video_path: Path to rendered MP4 (or null if not rendered)
- cuda_available: Whether CUDA was available
"""
image_path_obj = Path(image_path)
if not image_path_obj.exists():
raise FileNotFoundError(f"Image not found: {image_path}")
model = get_global_model()
video_path, ply_path = model.predict_and_maybe_render(
image_path_obj,
trajectory_type=trajectory_type,
num_frames=num_frames,
fps=fps,
output_long_side=output_long_side,
render_video=render_video,
)
return {
"ply_path": str(ply_path),
"video_path": str(video_path) if video_path else None,
"cuda_available": torch.cuda.is_available(),
}
@mcp.tool()
def sharp_render(
ply_path: str,
trajectory_type: TrajectoryType = "rotate_forward",
num_frames: int = 60,
fps: int = 30,
output_long_side: int | None = None,
) -> dict:
"""Render a video from an existing PLY file.
Note: This requires re-predicting from the original image since Gaussians
are not stored in standard PLY format. For now, returns an error.
Future versions may support loading Gaussians from PLY.
Args:
ply_path: Path to PLY file (from previous prediction).
trajectory_type: Camera trajectory type.
num_frames: Number of frames.
fps: Frames per second.
output_long_side: Output resolution.
Returns:
dict with error message (feature not yet implemented).
"""
return {
"error": "Rendering from PLY not yet implemented. Use sharp_predict with render_video=True.",
"hint": "PLY files store only point data, not the full Gaussian parameters needed for rendering.",
}
@mcp.tool()
def list_outputs() -> dict:
"""List all generated output files (PLY and MP4).
Returns:
dict with keys:
- outputs_dir: Path to outputs directory
- ply_files: List of PLY file paths
- video_files: List of MP4 file paths
"""
outputs_dir = DEFAULT_OUTPUTS_DIR
ply_files = sorted(outputs_dir.glob("*.ply"))
video_files = sorted(outputs_dir.glob("*.mp4"))
return {
"outputs_dir": str(outputs_dir),
"ply_files": [str(f) for f in ply_files],
"video_files": [str(f) for f in video_files],
}
# -----------------------------------------------------------------------------
# Resources
# -----------------------------------------------------------------------------
@mcp.resource("sharp://info")
def get_info() -> str:
"""Get SHARP server info including GPU status and configuration."""
cuda_available = torch.cuda.is_available()
gpu_info = []
if cuda_available:
for i in range(torch.cuda.device_count()):
props = torch.cuda.get_device_properties(i)
gpu_info.append({
"index": i,
"name": props.name,
"total_memory_gb": round(props.total_memory / (1024**3), 2),
"compute_capability": f"{props.major}.{props.minor}",
})
info = {
"model": "SHARP (Apple ml-sharp)",
"description": "Single-image 3D Gaussian scene prediction",
"cuda_available": cuda_available,
"cuda_device_count": torch.cuda.device_count() if cuda_available else 0,
"gpus": gpu_info,
"outputs_dir": str(DEFAULT_OUTPUTS_DIR),
"checkpoint_sources": [
"SHARP_CHECKPOINT_PATH env var",
"HuggingFace Hub (apple/Sharp)",
"Upstream CDN (torch.hub)",
],
"env_vars": {
"SHARP_CHECKPOINT_PATH": os.getenv("SHARP_CHECKPOINT_PATH", "(not set)"),
"SHARP_KEEP_MODEL_ON_DEVICE": os.getenv("SHARP_KEEP_MODEL_ON_DEVICE", "1"),
"CUDA_VISIBLE_DEVICES": os.getenv("CUDA_VISIBLE_DEVICES", "(not set)"),
},
}
return json.dumps(info, indent=2)
@mcp.resource("sharp://help")
def get_help() -> str:
"""Get usage help for the SHARP MCP server."""
help_text = """
# SHARP MCP Server
## Tools
### sharp_predict
Predict 3D Gaussians from a single image.
Parameters:
- image_path (required): Absolute path to input image
- render_video: Whether to render MP4 (default: true, requires CUDA)
- trajectory_type: swipe | shake | rotate | rotate_forward (default: rotate_forward)
- num_frames: Number of video frames (default: 60)
- fps: Video frame rate (default: 30)
- output_long_side: Output resolution, null = match input
### list_outputs
List all generated PLY and MP4 files.
## Resources
### sharp://info
Server info, GPU status, configuration.
### sharp://help
This help text.
## Environment Variables
- SHARP_MCP_PORT: MCP server port (default: 49201)
- SHARP_CHECKPOINT_PATH: Local checkpoint path override
- SHARP_KEEP_MODEL_ON_DEVICE: Keep model on GPU (default: 1)
- CUDA_VISIBLE_DEVICES: GPU selection (e.g., "0" or "0,1")
"""
return help_text.strip()
# -----------------------------------------------------------------------------
# Main
# -----------------------------------------------------------------------------
if __name__ == "__main__":
# Run as stdio transport for MCP clients
mcp.run()
|