Spaces:
Runtime error
Runtime error
JAYABALAMBIKA.R
commited on
Create app.py
Browse filesThis is the application file for gradio
app.py
ADDED
|
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import supervision as sv
|
| 3 |
+
from ultralytics import YOLO
|
| 4 |
+
import os #added for cache_examples
|
| 5 |
+
from PIL import Image, ImageColor
|
| 6 |
+
import numpy as np
|
| 7 |
+
|
| 8 |
+
def load_model(img):
|
| 9 |
+
# Load model, get results and return detections/labels
|
| 10 |
+
model = YOLO('yolov8s-seg.pt')
|
| 11 |
+
result = model(img, verbose=False, imgsz=1280)[0]
|
| 12 |
+
detections = sv.Detections.from_ultralytics(result)
|
| 13 |
+
labels = [
|
| 14 |
+
f"{model.model.names[class_id]} {confidence:.2f}"
|
| 15 |
+
for class_id, confidence in zip(detections.class_id, detections.confidence)
|
| 16 |
+
]
|
| 17 |
+
|
| 18 |
+
return detections, labels
|
| 19 |
+
|
| 20 |
+
def calculate_crop_dim(a,b):
|
| 21 |
+
#Calculates the crop dimensions of the image resultant
|
| 22 |
+
if a>b:
|
| 23 |
+
width= a
|
| 24 |
+
height = a
|
| 25 |
+
else:
|
| 26 |
+
width = b
|
| 27 |
+
height = b
|
| 28 |
+
|
| 29 |
+
return width, height
|
| 30 |
+
|
| 31 |
+
def annotator(img,annotators,colorbb,colormask,colorellipse,colorbc,colorcir,colorlabel):
|
| 32 |
+
|
| 33 |
+
"""
|
| 34 |
+
Function that changes the color of annotators
|
| 35 |
+
Args:
|
| 36 |
+
annotators: Icon whose color needs to be changed.
|
| 37 |
+
color: Chosen color with which to edit the input icon in Hex.
|
| 38 |
+
img: Input image is numpy matrix in BGR.
|
| 39 |
+
Returns:
|
| 40 |
+
annotators: annotated image
|
| 41 |
+
"""
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
img = img[...,::-1].copy() # BGR to RGB using numpy
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
detections, labels = load_model(img)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
if "Blur" in annotators:
|
| 52 |
+
# Apply Blur
|
| 53 |
+
blur_annotator = sv.BlurAnnotator()
|
| 54 |
+
img = blur_annotator.annotate(img, detections=detections)
|
| 55 |
+
|
| 56 |
+
if "BoundingBox" in annotators:
|
| 57 |
+
# Draw Bounding box
|
| 58 |
+
box_annotator = sv.BoundingBoxAnnotator(sv.Color.from_hex(str(colorbb)))
|
| 59 |
+
img = box_annotator.annotate(img, detections=detections)
|
| 60 |
+
|
| 61 |
+
if "Mask" in annotators:
|
| 62 |
+
# Draw Mask
|
| 63 |
+
mask_annotator = sv.MaskAnnotator(sv.Color.from_hex(str(colormask)))
|
| 64 |
+
img = mask_annotator.annotate(img, detections=detections)
|
| 65 |
+
|
| 66 |
+
if "Ellipse" in annotators:
|
| 67 |
+
# Draw ellipse
|
| 68 |
+
ellipse_annotator = sv.EllipseAnnotator(sv.Color.from_hex(str(colorellipse)))
|
| 69 |
+
img = ellipse_annotator.annotate(img, detections=detections)
|
| 70 |
+
|
| 71 |
+
if "BoxCorner" in annotators:
|
| 72 |
+
# Draw Box corner
|
| 73 |
+
corner_annotator = sv.BoxCornerAnnotator(sv.Color.from_hex(str(colorbc)))
|
| 74 |
+
img = corner_annotator.annotate(img, detections=detections)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
if "Circle" in annotators:
|
| 78 |
+
# Draw circle
|
| 79 |
+
circle_annotator = sv.CircleAnnotator(sv.Color.from_hex(str(colorcir)))
|
| 80 |
+
img = circle_annotator.annotate(img, detections=detections)
|
| 81 |
+
|
| 82 |
+
if "Label" in annotators:
|
| 83 |
+
# Draw Label
|
| 84 |
+
label_annotator = sv.LabelAnnotator(text_position=sv.Position.CENTER)
|
| 85 |
+
label_annotator = sv.LabelAnnotator(sv.Color.from_hex(str(colorlabel)))
|
| 86 |
+
img = label_annotator.annotate(img, detections=detections, labels=labels)
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
#crop image for the largest possible square
|
| 91 |
+
res_img = Image.fromarray(img)
|
| 92 |
+
print(type(res_img))
|
| 93 |
+
|
| 94 |
+
x=0
|
| 95 |
+
y=0
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
print("size of the pil im=", res_img.size)
|
| 99 |
+
(v1,v2) = res_img.size
|
| 100 |
+
width, height = calculate_crop_dim(v1, v2)
|
| 101 |
+
print(width, height)
|
| 102 |
+
my_img = np.array(res_img)
|
| 103 |
+
|
| 104 |
+
crop_img = my_img[y:y+height, x:x+width]
|
| 105 |
+
print(type(crop_img))
|
| 106 |
+
|
| 107 |
+
return crop_img[...,::-1].copy() # BGR to RGB using numpy
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue=gr.themes.colors.purple)
|
| 111 |
+
.set(
|
| 112 |
+
button_primary_background_fill="*primary_600",
|
| 113 |
+
button_primary_background_fill_hover="*primary_700",
|
| 114 |
+
checkbox_label_background_fill_selected="*primary_600",
|
| 115 |
+
checkbox_background_color_selected="*primary_400",
|
| 116 |
+
)) as demo:
|
| 117 |
+
gr.Markdown("""# Supervision Annotators""")
|
| 118 |
+
annotators = gr.CheckboxGroup(choices=["BoundingBox", "Mask", "Ellipse", "BoxCorner", "Circle", "Label", "Blur"], value=["BoundingBox", "Mask"], label="Select Annotators:")
|
| 119 |
+
|
| 120 |
+
with gr.Accordion("**Color Picker**"):
|
| 121 |
+
with gr.Row():
|
| 122 |
+
with gr.Column():
|
| 123 |
+
colorbb = gr.ColorPicker(value="#A351FB",label="BoundingBox")
|
| 124 |
+
with gr.Column():
|
| 125 |
+
colormask = gr.ColorPicker(value="#A351FB",label="Mask")
|
| 126 |
+
with gr.Column():
|
| 127 |
+
colorellipse = gr.ColorPicker(value="#A351FB",label="Ellipse")
|
| 128 |
+
with gr.Column():
|
| 129 |
+
colorbc = gr.ColorPicker(value="#A351FB",label="BoxCorner")
|
| 130 |
+
with gr.Column():
|
| 131 |
+
colorcir = gr.ColorPicker(value="#A351FB",label="Circle")
|
| 132 |
+
with gr.Column():
|
| 133 |
+
colorlabel = gr.ColorPicker(value="#A351FB",label="Label")
|
| 134 |
+
|
| 135 |
+
with gr.Row():
|
| 136 |
+
with gr.Column():
|
| 137 |
+
with gr.Tab("Input image"):
|
| 138 |
+
image_input = gr.Image(type="numpy", show_label=False)
|
| 139 |
+
with gr.Column():
|
| 140 |
+
with gr.Tab("Result image"):
|
| 141 |
+
image_output = gr.Image(type="numpy", show_label=False)
|
| 142 |
+
image_button = gr.Button(value="Annotate it!", variant="primary")
|
| 143 |
+
|
| 144 |
+
image_button.click(annotator, inputs=[image_input,annotators,colorbb,colormask,colorellipse,colorbc,colorcir,colorlabel], outputs=image_output)
|
| 145 |
+
|
| 146 |
+
gr.Markdown("## Image Examples")
|
| 147 |
+
gr.Examples(
|
| 148 |
+
examples=[os.path.join(os.path.abspath(''), "city.jpg"),
|
| 149 |
+
os.path.join(os.path.abspath(''), "household.jpg"),
|
| 150 |
+
os.path.join(os.path.abspath(''), "industry.jpg"),
|
| 151 |
+
os.path.join(os.path.abspath(''), "retail.jpg"),
|
| 152 |
+
os.path.join(os.path.abspath(''), "aerodefence.jpg")],
|
| 153 |
+
inputs=image_input,
|
| 154 |
+
outputs=image_output,
|
| 155 |
+
fn=annotator,
|
| 156 |
+
cache_examples=False,
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
demo.launch(debug=False)
|