Commit
·
081d5bf
1
Parent(s):
8fe5a80
move preprocessing to dependency injection
Browse files- base_model/evaluate.py +18 -20
- base_model/string_utils.py +20 -0
base_model/evaluate.py
CHANGED
|
@@ -1,29 +1,27 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
"""Preprocesses the sentence string by normalizing.
|
| 3 |
|
| 4 |
Args:
|
| 5 |
s (str): the sentence
|
| 6 |
|
| 7 |
Returns:
|
| 8 |
-
string: normalized
|
| 9 |
"""
|
| 10 |
-
import string, re
|
| 11 |
-
|
| 12 |
-
def remove_articles(text):
|
| 13 |
-
regex = re.compile(r"\b(a|an|the)\b", re.UNICODE)
|
| 14 |
-
return re.sub(regex, " ", text)
|
| 15 |
-
|
| 16 |
-
def white_space_fix(text):
|
| 17 |
-
return " ".join(text.split())
|
| 18 |
-
|
| 19 |
-
def remove_punc(text):
|
| 20 |
-
exclude = set(string.punctuation)
|
| 21 |
-
return "".join(ch for ch in text if ch not in exclude)
|
| 22 |
|
| 23 |
-
|
| 24 |
-
return text.lower()
|
| 25 |
|
| 26 |
-
return
|
| 27 |
|
| 28 |
|
| 29 |
def compute_exact_match(prediction: str, answer: str) -> int:
|
|
@@ -36,7 +34,7 @@ def compute_exact_match(prediction: str, answer: str) -> int:
|
|
| 36 |
Returns:
|
| 37 |
int: 1 for exact match, 0 for not
|
| 38 |
"""
|
| 39 |
-
return int(
|
| 40 |
|
| 41 |
|
| 42 |
def compute_f1(prediction: str, answer: str) -> float:
|
|
@@ -49,8 +47,8 @@ def compute_f1(prediction: str, answer: str) -> float:
|
|
| 49 |
Returns:
|
| 50 |
boolean: the f1 score
|
| 51 |
"""
|
| 52 |
-
pred_tokens =
|
| 53 |
-
answer_tokens =
|
| 54 |
|
| 55 |
if len(pred_tokens) == 0 or len(answer_tokens) == 0:
|
| 56 |
return int(pred_tokens == answer_tokens)
|
|
|
|
| 1 |
+
from typing import Callable, List
|
| 2 |
+
|
| 3 |
+
from base_model.string_utils import lower, remove_articles, remove_punc, white_space_fix
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def normalize_text(inp: str, functions: List[Callable[[str], str]]):
|
| 7 |
+
for fun in functions:
|
| 8 |
+
inp = fun(inp)
|
| 9 |
+
return inp
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def normalize_text_default(inp: str) -> str:
|
| 13 |
"""Preprocesses the sentence string by normalizing.
|
| 14 |
|
| 15 |
Args:
|
| 16 |
s (str): the sentence
|
| 17 |
|
| 18 |
Returns:
|
| 19 |
+
string: normalized with default parames
|
| 20 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
+
steps = [remove_articles, white_space_fix, remove_punc, lower]
|
|
|
|
| 23 |
|
| 24 |
+
return normalize_text(inp, steps)
|
| 25 |
|
| 26 |
|
| 27 |
def compute_exact_match(prediction: str, answer: str) -> int:
|
|
|
|
| 34 |
Returns:
|
| 35 |
int: 1 for exact match, 0 for not
|
| 36 |
"""
|
| 37 |
+
return int(normalize_text_default(prediction) == normalize_text_default(answer))
|
| 38 |
|
| 39 |
|
| 40 |
def compute_f1(prediction: str, answer: str) -> float:
|
|
|
|
| 47 |
Returns:
|
| 48 |
boolean: the f1 score
|
| 49 |
"""
|
| 50 |
+
pred_tokens = normalize_text_default(prediction).split()
|
| 51 |
+
answer_tokens = normalize_text_default(answer).split()
|
| 52 |
|
| 53 |
if len(pred_tokens) == 0 or len(answer_tokens) == 0:
|
| 54 |
return int(pred_tokens == answer_tokens)
|
base_model/string_utils.py
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import string
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def remove_articles(text):
|
| 6 |
+
regex = re.compile(r"\b(a|an|the)\b", re.UNICODE)
|
| 7 |
+
return re.sub(regex, " ", text)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def white_space_fix(text):
|
| 11 |
+
return " ".join(text.split())
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def remove_punc(text):
|
| 15 |
+
exclude = set(string.punctuation)
|
| 16 |
+
return "".join(ch for ch in text if ch not in exclude)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def lower(text):
|
| 20 |
+
return text.lower()
|