Robert
commited on
Commit
·
2827202
1
Parent(s):
83870cc
Added a way to evaluate overall performance of our model based on exact match and F1-score.
Browse files- base_model/evaluate.py +66 -0
- base_model/main.py +5 -0
- base_model/retriever.py +33 -0
base_model/evaluate.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def normalize_text(s: str) -> str:
|
| 2 |
+
"""Preprocesses the sentence string by normalizing.
|
| 3 |
+
|
| 4 |
+
Args:
|
| 5 |
+
s (str): the sentence
|
| 6 |
+
|
| 7 |
+
Returns:
|
| 8 |
+
string: normalized sentence
|
| 9 |
+
"""
|
| 10 |
+
import string, re
|
| 11 |
+
|
| 12 |
+
def remove_articles(text):
|
| 13 |
+
regex = re.compile(r"\b(a|an|the)\b", re.UNICODE)
|
| 14 |
+
return re.sub(regex, " ", text)
|
| 15 |
+
|
| 16 |
+
def white_space_fix(text):
|
| 17 |
+
return " ".join(text.split())
|
| 18 |
+
|
| 19 |
+
def remove_punc(text):
|
| 20 |
+
exclude = set(string.punctuation)
|
| 21 |
+
return "".join(ch for ch in text if ch not in exclude)
|
| 22 |
+
|
| 23 |
+
def lower(text):
|
| 24 |
+
return text.lower()
|
| 25 |
+
|
| 26 |
+
return white_space_fix(remove_articles(remove_punc(lower(s))))
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def compute_exact_match(prediction: str, answer: str) -> int:
|
| 30 |
+
"""Computes exact match for sentences.
|
| 31 |
+
|
| 32 |
+
Args:
|
| 33 |
+
prediction (str): the predicted answer
|
| 34 |
+
answer (str): the gold answer
|
| 35 |
+
|
| 36 |
+
Returns:
|
| 37 |
+
int: 1 for exact match, 0 for not
|
| 38 |
+
"""
|
| 39 |
+
return int(normalize_text(prediction) == normalize_text(answer))
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def compute_f1(prediction: str, answer: str) -> float:
|
| 43 |
+
"""Computes F1-score on token overlap for sentences.
|
| 44 |
+
|
| 45 |
+
Args:
|
| 46 |
+
prediction (str): the predicted answer
|
| 47 |
+
answer (str): the gold answer
|
| 48 |
+
|
| 49 |
+
Returns:
|
| 50 |
+
boolean: the f1 score
|
| 51 |
+
"""
|
| 52 |
+
pred_tokens = normalize_text(prediction).split()
|
| 53 |
+
answer_tokens = normalize_text(answer).split()
|
| 54 |
+
|
| 55 |
+
if len(pred_tokens) == 0 or len(answer_tokens) == 0:
|
| 56 |
+
return int(pred_tokens == answer_tokens)
|
| 57 |
+
|
| 58 |
+
common_tokens = set(pred_tokens) & set(answer_tokens)
|
| 59 |
+
|
| 60 |
+
if len(common_tokens) == 0:
|
| 61 |
+
return 0
|
| 62 |
+
|
| 63 |
+
prec = len(common_tokens) / len(pred_tokens)
|
| 64 |
+
rec = len(common_tokens) / len(answer_tokens)
|
| 65 |
+
|
| 66 |
+
return 2 * (prec * rec) / (prec + rec)
|
base_model/main.py
CHANGED
|
@@ -13,3 +13,8 @@ if __name__ == '__main__':
|
|
| 13 |
print(f"Result {i+1} (score: {score:.02f}):")
|
| 14 |
print(result['text'][i])
|
| 15 |
print() # Newline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
print(f"Result {i+1} (score: {score:.02f}):")
|
| 14 |
print(result['text'][i])
|
| 15 |
print() # Newline
|
| 16 |
+
|
| 17 |
+
# Compute overall performance
|
| 18 |
+
exact_match, f1_score, total = r.evaluate()
|
| 19 |
+
print(f"Exact match: {exact_match} / {total}\n"
|
| 20 |
+
f"F1-score: {f1_score:.02f}")
|
base_model/retriever.py
CHANGED
|
@@ -7,6 +7,9 @@ from transformers import (
|
|
| 7 |
from datasets import load_dataset
|
| 8 |
import torch
|
| 9 |
import os.path
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Hacky fix for FAISS error on macOS
|
| 12 |
# See https://stackoverflow.com/a/63374568/4545692
|
|
@@ -49,6 +52,7 @@ class Retriever:
|
|
| 49 |
# Dataset building
|
| 50 |
self.dataset = self.__init_dataset(dataset)
|
| 51 |
|
|
|
|
| 52 |
def __init_dataset(self,
|
| 53 |
dataset: str,
|
| 54 |
fname: str = "./models/paragraphs_embedding.faiss"):
|
|
@@ -65,6 +69,7 @@ class Retriever:
|
|
| 65 |
"""
|
| 66 |
# Load dataset
|
| 67 |
ds = load_dataset(dataset, name="paragraphs")["train"]
|
|
|
|
| 68 |
|
| 69 |
if os.path.exists(fname):
|
| 70 |
# If we already have FAISS embeddings, load them from disk
|
|
@@ -112,4 +117,32 @@ class Retriever:
|
|
| 112 |
scores, results = self.dataset.get_nearest_examples(
|
| 113 |
"embeddings", question_embedding, k=k
|
| 114 |
)
|
|
|
|
| 115 |
return scores, results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
from datasets import load_dataset
|
| 8 |
import torch
|
| 9 |
import os.path
|
| 10 |
+
import numpy
|
| 11 |
+
|
| 12 |
+
import evaluate
|
| 13 |
|
| 14 |
# Hacky fix for FAISS error on macOS
|
| 15 |
# See https://stackoverflow.com/a/63374568/4545692
|
|
|
|
| 52 |
# Dataset building
|
| 53 |
self.dataset = self.__init_dataset(dataset)
|
| 54 |
|
| 55 |
+
|
| 56 |
def __init_dataset(self,
|
| 57 |
dataset: str,
|
| 58 |
fname: str = "./models/paragraphs_embedding.faiss"):
|
|
|
|
| 69 |
"""
|
| 70 |
# Load dataset
|
| 71 |
ds = load_dataset(dataset, name="paragraphs")["train"]
|
| 72 |
+
print(ds)
|
| 73 |
|
| 74 |
if os.path.exists(fname):
|
| 75 |
# If we already have FAISS embeddings, load them from disk
|
|
|
|
| 117 |
scores, results = self.dataset.get_nearest_examples(
|
| 118 |
"embeddings", question_embedding, k=k
|
| 119 |
)
|
| 120 |
+
|
| 121 |
return scores, results
|
| 122 |
+
|
| 123 |
+
def evaluate(self):
|
| 124 |
+
"""Evaluates the entire model by computing F1-score and exact match on the
|
| 125 |
+
entire dataset.
|
| 126 |
+
|
| 127 |
+
Returns:
|
| 128 |
+
int: overall exact match
|
| 129 |
+
float: overall F1-score
|
| 130 |
+
int: total amount of questions handled
|
| 131 |
+
"""
|
| 132 |
+
questions_ds = load_dataset("GroNLP/ik-nlp-22_slp", name="questions")['test']
|
| 133 |
+
questions = questions_ds['question']
|
| 134 |
+
answers = questions_ds['answer']
|
| 135 |
+
|
| 136 |
+
predictions = []
|
| 137 |
+
scores = 0
|
| 138 |
+
|
| 139 |
+
# Currently just takes the first answer and does not look at scores yet
|
| 140 |
+
for question in questions:
|
| 141 |
+
score, result = self.retrieve(question, 1)
|
| 142 |
+
scores += score[0]
|
| 143 |
+
predictions.append(result['text'][0])
|
| 144 |
+
|
| 145 |
+
exact_match = max((evaluate.compute_exact_match(predictions[i], answers[i])) for i in range(len(answers)))
|
| 146 |
+
f1_score = max((evaluate.compute_f1(predictions[i], answers[i])) for i in range(len(answers)))
|
| 147 |
+
|
| 148 |
+
return exact_match, f1_score, len(answers)
|