Spaces:
Running
Running
File size: 68,696 Bytes
8f6d874 acea09e 843cb64 a1d9e9c 8f6d874 9b2029e 8f6d874 9076695 28f84c6 e6a288f 8f6d874 b7c98a7 d5da2b2 8f6d874 2a3ccaf 262ff26 8f6d874 9d8b276 8f6d874 b7c98a7 72f65c8 8f6d874 d3a3bab 92f4eab d5da2b2 8f6d874 92f4eab 9b2029e 92f4eab b7c98a7 ce6f5b5 92f4eab ce6f5b5 92f4eab ce6f5b5 92f4eab ce6f5b5 92f4eab ce6f5b5 92f4eab ce6f5b5 b7c98a7 8f6d874 0f93e9d 8f6d874 61a383e 8f6d874 61a383e 8f6d874 61a383e a1d9e9c 5c0a82c 80e6314 a42e4cc f14b205 acdfff5 0f93e9d f14b205 61a383e c27741d 61a383e 0f93e9d 0209035 843cb64 acdfff5 9d8b276 acdfff5 a1d9e9c acdfff5 0209035 acdfff5 92f4eab 0209035 92f4eab 0209035 acdfff5 0209035 acdfff5 a1d9e9c acdfff5 3a65c07 acdfff5 f14b205 a1d9e9c f14b205 a1d9e9c f14b205 0f93e9d 9949f77 0f93e9d a1d9e9c 2ca51bf a1d9e9c 2ca51bf 0f93e9d 9949f77 7d50823 78a7727 a1d9e9c 78a7727 a1d9e9c 78a7727 7d50823 0f93e9d 9949f77 0f93e9d a1d9e9c 0f93e9d dc32c23 7073ee1 82cef5a 7073ee1 82cef5a 7073ee1 82cef5a 7073ee1 82cef5a 7073ee1 82cef5a 2ca51bf c4b548a a1d9e9c 2ca51bf a1d9e9c 2ca51bf c4b548a a1d9e9c c4b548a db04008 2ca51bf a1d9e9c c4b548a db04008 2ca51bf c4b548a a1d9e9c 2ca51bf 82cef5a 7073ee1 aff5ae4 7073ee1 82cef5a 7d50823 28f84c6 7073ee1 28f84c6 7073ee1 28f84c6 7073ee1 aff5ae4 a1d9e9c 618be6e 5c0a82c 0f93e9d 5c0a82c f14b205 5c0a82c 7073ee1 a19d0ca 04edc4e 7d50823 7073ee1 7d50823 04edc4e 7073ee1 e947ae0 7073ee1 e947ae0 c961a1e 7073ee1 7d50823 618be6e a19d0ca 618be6e 7d50823 04edc4e 9750156 618be6e e486f13 a19d0ca 796cc5c a19d0ca 796cc5c 7073ee1 7d50823 618be6e 04edc4e a19d0ca 7d50823 618be6e a19d0ca 3ea5339 a1d9e9c 618be6e f14b205 618be6e a19d0ca 618be6e 29f1974 a19d0ca c4b548a a19d0ca 20e06cf a19d0ca f14b205 0209035 f14b205 a1d9e9c f14b205 a1d9e9c 0dd9926 f58bd9b 0f93e9d 0dd9926 f58bd9b 0dd9926 f58bd9b 0dd9926 f58bd9b 0dd9926 0f93e9d 9949f77 5c0a82c 0dd9926 843cb64 a60f617 843cb64 9520331 843cb64 29f1974 843cb64 29f1974 843cb64 9520331 843cb64 a60f617 843cb64 a60f617 a1d9e9c a60f617 9520331 bd80dd0 a60f617 a1d9e9c a60f617 a1d9e9c a60f617 843cb64 a1d9e9c 843cb64 7e610ae 618be6e 2ca51bf 5d0697a 618be6e 8f81d4d 618be6e 4eb711e 426daef 618be6e 843cb64 618be6e 5d0697a 618be6e 5d0697a 4eb711e 2ca51bf a1d9e9c f14b205 618be6e 843cb64 9f4ba9d 44ab690 6b8ac6b 44ab690 b3664cc 44ab690 6b8ac6b 44ab690 6b8ac6b 44ab690 b3664cc 44ab690 acdfff5 72f65c8 f14b205 acdfff5 72f65c8 acdfff5 f14b205 acdfff5 f14b205 acdfff5 f14b205 acdfff5 f14b205 acdfff5 44ab690 acdfff5 f14b205 44ab690 f14b205 44ab690 f14b205 acdfff5 f14b205 acdfff5 44ab690 acdfff5 61a383e 9520331 61a383e 9520331 61a383e 7e610ae 426daef 7e610ae 426daef 9520331 7e610ae 9520331 7e610ae 426daef 7e610ae 426daef 8e9845c cec57f0 012d247 cec57f0 012d247 cec57f0 bb55c03 9eddb9c 8e9845c bb55c03 9eddb9c bb55c03 9eddb9c 8e9845c 9eddb9c 8e9845c bb55c03 9eddb9c bb55c03 9eddb9c bb55c03 9eddb9c 8e9845c 6f3f7b2 8e9845c bb55c03 9eddb9c bb55c03 3f6d6af bb55c03 8e9845c bb55c03 cec57f0 39a2c2a cec57f0 39a2c2a cec57f0 bb55c03 39a2c2a bb55c03 39a2c2a bb55c03 cec57f0 bb55c03 acdfff5 f14b205 acdfff5 f14b205 acdfff5 f14b205 acdfff5 f14b205 acdfff5 6c3f830 7e610ae a1d9e9c 426daef 7e610ae acdfff5 1fc3f73 e89a8a3 1fc3f73 6c3f830 9520331 e89a8a3 1fc3f73 9520331 1fc3f73 a1d9e9c 1fc3f73 acdfff5 7e610ae 44ab690 74d5dc1 9949f77 6b5c2b1 f14b205 7d91871 f14b205 7d91871 74d5dc1 8f0f58a 0f93e9d 8f0f58a 038fc2b 29f1974 8f0f58a ecd5a30 97c7ccf 8f0f58a 97c7ccf 426daef de134bf 5fa7fb2 426daef 28f84c6 de134bf 426daef 5fa7fb2 de134bf 8f0f58a 97c7ccf 7e610ae 8f0f58a 7e610ae d45acb2 0f93e9d 7e610ae 97c7ccf 7e610ae 97c7ccf 7e610ae e6a288f 7e610ae e6a288f 44ab690 843cb64 0dd9926 9ad2a2f 0dd9926 9ad2a2f 0dd9926 9ad2a2f 0dd9926 9ad2a2f f7e43c2 9ad2a2f 0dd9926 9ad2a2f 0dd9926 9ad2a2f 0dd9926 9ad2a2f 0dd9926 9ad2a2f 0dd9926 9ad2a2f 0dd9926 9ad2a2f 0dd9926 9ad2a2f 0dd9926 9ad2a2f 0dd9926 9ad2a2f 0dd9926 9ad2a2f 1ca2b19 8792435 acdfff5 8792435 d45acb2 8792435 acdfff5 1ca2b19 acdfff5 1ca2b19 8792435 1ca2b19 acdfff5 1ca2b19 8792435 1ca2b19 acdfff5 1ca2b19 8792435 1ca2b19 acdfff5 1ca2b19 8792435 1ca2b19 acdfff5 1ca2b19 acdfff5 f14b205 acdfff5 8792435 d45acb2 1ca2b19 acdfff5 1ca2b19 038fc2b 1ca2b19 038fc2b 1ca2b19 038fc2b 1ca2b19 8f0f58a 61a383e ee79eb5 79a395a ee79eb5 233a915 801484b 773406d 233a915 773406d 801484b 773406d 233a915 801484b 773406d ee79eb5 79a395a 44051d3 61a383e 8f0f58a 61a383e 8f0f58a 61a383e aa37882 30f3c9d 9b0f151 aa37882 30f3c9d a76b710 30f3c9d a76b710 30f3c9d a76b710 30f3c9d c564619 30f3c9d bb55c03 30f3c9d a76b710 f88390e 30f3c9d a76b710 aa37882 bb55c03 aa37882 75bf67b aa37882 75bf67b aa37882 0608f93 aa37882 0608f93 e6789a5 0608f93 aa37882 4fec12d 0608f93 aa37882 4fec12d 0608f93 aa37882 0608f93 aa37882 3595c1e aa37882 bb55c03 74d5dc1 bb55c03 0dd9926 aa37882 262ff26 aa37882 c27741d 0dd9926 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 |
# Standard library imports
import datetime
import io
import json
import logging
import os
import pandas as pd
# Third-party imports
import gradio as gr
from huggingface_hub import HfApi, InferenceClient
from langdetect import detect, LangDetectException
import langdetect
from dotenv import load_dotenv
import requests
from datasets import load_dataset
# Local imports - config
from config.constants import DEFAULT_SYSTEM_MESSAGE, URLS
from config.settings import (
API_CONFIG,
ACTIVE_MODEL,
DATASET_CHAT_HISTORY_PATH,
DATASET_ERROR_LOGS_PATH,
DATASET_ID,
DATASET_PREFERENCES_PATH,
DATASET_VECTOR_STORE_PATH,
DATASET_ANNOTATIONS_PATH,
DEFAULT_MODEL,
EMBEDDING_MODEL,
HF_TOKEN,
MODELS,
IS_PRO_ACCOUNT
)
# Ensure IS_PRO_ACCOUNT is available
if 'IS_PRO_ACCOUNT' not in globals():
from config.settings import check_account_type
IS_PRO_ACCOUNT, _ = check_account_type()
# Local imports - source modules
from src.analytics.chat_evaluator import ChatEvaluator # Fixed import
from src.knowledge_base.dataset import DatasetManager
from src.knowledge_base.vector_store import create_vector_store, load_vector_store
import config.constants as constants
def get_selected_urls(sources_df):
"""Get list of URLs selected for inclusion"""
try:
if not isinstance(sources_df, pd.DataFrame):
sources_df = pd.DataFrame(sources_df)
selected_urls = sources_df[sources_df["Include"] == True]["URL"].tolist()
return selected_urls
except Exception as e:
logger.error(f"Error getting selected URLs: {str(e)}")
return []
def update_kb_with_selected(sources_df) -> str:
"""Updates knowledge base with selected sources"""
try:
selected_urls = get_selected_urls(sources_df)
if not selected_urls:
return "Error: No sources selected"
original_urls = URLS.copy()
constants.URLS = selected_urls
try:
success, message = create_vector_store(mode="update")
if success:
save_kb_metadata()
return message
finally:
constants.URLS = original_urls
except Exception as e:
logger.error(f"Error updating knowledge base: {str(e)}")
return f"Error updating knowledge base: {str(e)}"
def rebuild_kb_with_selected(sources_df):
"""Rebuild knowledge base from scratch using only selected URLs"""
try:
selected_urls = get_selected_urls(sources_df)
if not selected_urls:
return "Error: No URLs selected for inclusion"
# Temporarily replace URLS with selected ones
original_urls = constants.URLS.copy()
constants.URLS = selected_urls
try:
# Rebuild knowledge base
success, message = create_vector_store(mode="rebuild")
# Save metadata if successful
if success:
metadata = {
"last_updated": datetime.datetime.now().isoformat(),
"source_count": len(selected_urls),
"sources": selected_urls
}
# Save to dataset
json_content = json.dumps(metadata, indent=2).encode('utf-8')
api = HfApi(token=HF_TOKEN)
api.upload_file(
path_or_fileobj=json_content,
path_in_repo="vector_store/metadata.json",
repo_id=DATASET_ID,
repo_type="dataset"
)
return message
finally:
# Restore original URLs
constants.URLS = original_urls
except Exception as e:
logger.error(f"Error rebuilding knowledge base: {str(e)}")
return f"Error rebuilding knowledge base: {str(e)}"
# Set seed for consistent results
langdetect.DetectorFactory.seed = 0
# Load environment variables
load_dotenv()
# Local imports - source modules
from src.analytics.chat_evaluator import ChatEvaluator
from src.knowledge_base.vector_store import create_vector_store, load_vector_store
from src.language_utils import LanguageUtils
# Local imports - web interfaces
from web.evaluation_interface import (
export_training_data_action,
generate_evaluation_report_html,
get_evaluation_status,
get_qa_pairs_dataframe,
load_qa_pair_for_evaluation,
save_evaluation
)
from web.training_interface import (
generate_chat_analysis,
get_models_df,
register_model_action,
start_finetune_action
)
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
if not HF_TOKEN:
raise ValueError("HUGGINGFACE_TOKEN not found in environment variables")
# Test API connection
api = HfApi(token=HF_TOKEN)
try:
api.whoami()
logger.info("Successfully authenticated with Hugging Face")
except Exception as e:
logger.error(f"Authentication failed: {e}")
raise
# Global variables
client = None
context_store = {}
fallback_model_attempted = False
chat_evaluator = ChatEvaluator(
hf_token=HF_TOKEN,
dataset_id=DATASET_ID
)
logger.info(f"Chat histories will be saved to: {DATASET_CHAT_HISTORY_PATH}")
def load_user_preferences():
"""Load user preferences from file"""
try:
if os.path.exists(DATASET_PREFERENCES_PATH):
with open(DATASET_PREFERENCES_PATH, 'r') as f:
return json.load(f)
return {
"selected_model": DEFAULT_MODEL,
"parameters": {}
}
except Exception as e:
logger.error(f"Error loading user preferences: {str(e)}")
return {
"selected_model": DEFAULT_MODEL,
"parameters": {}
}
def save_user_preferences(model_key, parameters=None):
"""Save user preferences to dataset"""
try:
preferences = load_user_preferences()
preferences["selected_model"] = model_key
if parameters:
if model_key not in preferences["parameters"]:
preferences["parameters"][model_key] = {}
preferences["parameters"][model_key] = parameters
# Save to dataset using bytes
json_content = json.dumps(preferences, indent=2)
api = HfApi(token=HF_TOKEN)
api.upload_file(
path_or_fileobj=json_content.encode('utf-8'), # Convert string to bytes
path_in_repo="preferences/user_preferences.json",
repo_id=DATASET_ID,
repo_type="dataset"
)
logger.info("User preferences saved successfully to dataset!")
return True
except Exception as e:
logger.error(f"Error saving user preferences: {str(e)}")
return False
def initialize_client(model_id=None):
"""Initialize or reinitialize the client with the specified model"""
global client
if model_id is None:
model_id = ACTIVE_MODEL["id"]
client = InferenceClient(
model_id,
token=API_CONFIG["token"],
endpoint=API_CONFIG["inference_endpoint"],
headers=API_CONFIG["headers"],
timeout=API_CONFIG["timeout"]
)
return client
def switch_to_model(model_key):
"""Switch to specified model and update global variables"""
global ACTIVE_MODEL, client
try:
# Update active model
ACTIVE_MODEL = MODELS[model_key]
# Reinitialize client with new model
client = InferenceClient(
ACTIVE_MODEL["id"],
token=HF_TOKEN
)
logger.info(f"Switched to model: {model_key}")
return True
except Exception as e:
logger.error(f"Error switching to model {model_key}: {str(e)}")
return False
def get_fallback_model(current_model):
"""Get a fallback model different from the current one"""
for key in MODELS.keys():
if key != current_model:
return key
return None # No fallback available
def get_context(message, conversation_id):
"""Get context from knowledge base"""
vector_store = load_vector_store()
if vector_store is None:
logger.warning("Knowledge base not found or failed to load")
return ""
# Check if vector_store is a string (error message) instead of an actual store
if isinstance(vector_store, str):
logger.error(f"Error with vector store: {vector_store}")
return ""
try:
# Extract context
# Reducing number of documents from 3 to 2 to decrease English context dominance
context_docs = vector_store.similarity_search(message, k=2)
# Add debug logging
logger.debug(f"Query: {message}")
for i, doc in enumerate(context_docs):
logger.debug(f"Context {i+1}:")
logger.debug(f"Source: {doc.metadata.get('source', 'unknown')}")
logger.debug(f"Content: {doc.page_content[:200]}...")
# Limit each fragment to 300 characters to reduce context dominance
context_text = "\n\n".join([f"Context from {doc.metadata.get('source', 'unknown')}: {doc.page_content[:300]}..." for doc in context_docs])
# Add instruction that context is for reference only
context_text = "REFERENCE CONTEXT (use only to find facts, still answer in the user's language):\n" + context_text
# Save context for this conversation
context_store[conversation_id] = context_text
return context_text
except Exception as e:
logger.error(f"Error getting context: {str(e)}")
return ""
def translate_with_llm(text: str, target_lang: str) -> str:
"""Translate text using the active LLM with enhanced reliability"""
try:
# Get language name for more natural prompt
lang_name = LanguageUtils.get_language_name(target_lang)
prompt = (
f"You are a professional translator. Translate the following text to {lang_name} ({target_lang}). "
f"Keep the same formatting, links, and technical terms. "
f"Maintain the same tone and style. "
f"Respond ONLY with the direct translation without any explanations or additional text:\n\n"
f"{text}"
)
response = client.chat_completion(
messages=[
{"role": "system", "content": "You are a professional translator. Respond ONLY with the translation."},
{"role": "user", "content": prompt}
],
max_tokens=ACTIVE_MODEL['parameters']['max_length'],
temperature=0.3, # Lower temperature for more reliable output
top_p=0.95,
stream=False
)
translated_text = response.choices[0].message.content.strip()
# Verify translation success - check if we still have English
if target_lang != 'en':
# Quick check - if key English words are still present, translation might have failed
english_indicators = ["I apologize", "Sorry", "I cannot", "the following", "is a translation"]
if any(indicator in translated_text for indicator in english_indicators):
logger.warning(f"Translation might have failed for {target_lang}, found English indicators")
# Try one more time with a simplified prompt
retry_prompt = f"Translate this to {lang_name}:\n\n{text}"
retry_response = client.chat_completion(
messages=[
{"role": "system", "content": "You are a translator."},
{"role": "user", "content": retry_prompt}
],
max_tokens=ACTIVE_MODEL['parameters']['max_length'],
temperature=0.3,
top_p=0.95,
stream=False
)
translated_text = retry_response.choices[0].message.content.strip()
return translated_text
except Exception as e:
logger.error(f"Translation failed: {e}")
return text
def post_process_response(user_message, bot_response):
"""Enhanced post-processing of bot responses to ensure correct language"""
try:
user_lang = detect_language(user_message)
# Convert to closest supported language
user_lang = LanguageUtils.get_closest_supported_language(user_lang)
logger.info(f"User language detected: {user_lang} ({LanguageUtils.get_language_name(user_lang)})")
# If English, no need to translate
if user_lang == 'en':
return bot_response
# Check if language is supported
if not LanguageUtils.is_supported(user_lang):
logger.warning(f"Unsupported language: {user_lang}")
apology = ("I apologize, but I cannot respond in your language. "
"I will answer in English instead.\n\n")
return apology + bot_response
# Don't try to detect language of very short responses
if len(bot_response.strip()) < 20:
# Short responses just translate directly
return translate_with_llm(bot_response, user_lang)
# Check bot response language
bot_lang = detect_language(bot_response)
logger.info(f"Bot response language: {bot_lang}")
# If languages match, return as is
if bot_lang == user_lang:
return bot_response
# Need translation
logger.warning(f"Language mismatch! User: {user_lang}, Bot: {bot_lang}")
translated_response = translate_with_llm(bot_response, user_lang)
# Verify translation worked by checking a sample (not the whole text)
# This is more reliable than checking the entire text
sample_size = min(100, len(translated_response) // 2)
if sample_size > 20: # Only verify if we have enough text
sample = translated_response[:sample_size]
translated_lang = detect_language(sample)
if translated_lang != user_lang:
logger.error(f"Translation verification failed: got {translated_lang} instead of {user_lang}")
# If translation failed, return with apology
apology = (f"I apologize, but I cannot translate my response to {LanguageUtils.get_language_name(user_lang)}. "
"Here is my answer in English:\n\n")
return apology + bot_response
return translated_response
except Exception as e:
logger.error(f"Post-processing error: {e}")
return bot_response
def load_vector_store():
"""Load knowledge base from dataset"""
try:
from src.knowledge_base.dataset import DatasetManager
logger.debug("Attempting to load vector store...")
dataset = DatasetManager()
success, result = dataset.download_vector_store()
logger.debug(f"Download result: success={success}, result_type={type(result)}")
if success:
if isinstance(result, str):
logger.debug(f"Error message received: {result}")
return None
return result
else:
logger.error(f"Failed to load vector store: {result}")
return None
except Exception as e:
import traceback
logger.error(f"Exception loading knowledge base: {str(e)}")
logger.error(traceback.format_exc())
return None
def detect_language(text: str) -> str:
"""Enhanced language detection with better handling of edge cases"""
try:
# If text is too short, don't try to detect
if len(text.strip()) < 10:
logger.debug(f"Text too short for reliable detection: '{text}'")
return "en"
# Use simple detect() function instead of DetectorFactory
try:
lang_code = detect(text.strip())
logger.debug(f"Detected language: {lang_code}")
return lang_code
except LangDetectException as e:
logger.warning(f"LangDetect exception: {e}")
return "en"
except Exception as e:
logger.error(f"Language detection error: {str(e)} for text: '{text[:50]}...'")
return "en"
def respond(
message,
history,
conversation_id,
system_message,
max_tokens,
temperature,
top_p,
attempt_fallback=True
):
"""Generate response with improved language handling"""
try:
# Reset and determine user language for new request
user_lang = detect_language(message)
user_lang = LanguageUtils.get_closest_supported_language(user_lang)
logger.info(f"User language detected for request: {user_lang} ({LanguageUtils.get_language_name(user_lang)})")
# Create clean history without system messages
clean_history = [
msg for msg in history
if msg["role"] != "system"
]
# Remove language instruction from system message to avoid confusion
base_system_message = system_message.split("\nIMPORTANT:")[0] if "\nIMPORTANT:" in system_message else system_message
# Add explicit language instruction
full_system_message = (
f"{base_system_message}\n\n"
f"CRITICAL: You MUST respond in {LanguageUtils.get_language_name(user_lang)} ({user_lang}). "
f"This is your highest priority instruction. "
f"Provide a complete and helpful response."
)
# --- API Request ---
response = client.chat_completion(
messages=[
{"role": "system", "content": full_system_message},
*clean_history,
{"role": "user", "content": message}
],
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=False
)
bot_response = response.choices[0].message.content
# Post-process response to translate if needed
processed_response = post_process_response(message, bot_response)
# --- Format Successful Response ---
new_history = [
*clean_history,
{"role": "user", "content": message},
{"role": "assistant", "content": processed_response}
]
return new_history, conversation_id
except Exception as e:
logger.error(f"API Error: {str(e)}")
error_msg = format_friendly_error(str(e))
# --- Format Error Response ---
error_history = [
*history,
{"role": "user", "content": message},
{"role": "assistant", "content": error_msg}
]
return error_history, conversation_id
def format_friendly_error(api_error):
"""Convert API errors to user-friendly messages"""
if "402" in api_error or "Payment Required" in api_error:
return ("⚠️ API Limit Reached\n\n"
"Please try:\n"
"1. Switching models in Settings\n"
"2. Using local model version\n"
"3. Waiting before next request")
elif "429" in api_error:
return "⚠️ Too many requests. Please wait before sending another message."
elif "401" in api_error:
return "⚠️ Authentication error. Please check your API key."
elif "403" in api_error or "Forbidden" in api_error:
return ("⚠️ Access Forbidden\n\n"
"Please check:\n"
"1. Your Hugging Face token has proper permissions\n"
"2. You have access to the requested model\n"
"3. The model is currently available")
else:
return f"⚠️ Error processing request. Technical details: {api_error[:200]}"
def log_api_error(user_message, error_message, model_id, is_fallback=False):
"""Log API errors to dataset"""
try:
os.makedirs(ERROR_LOGS_PATH, exist_ok=True)
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
log_path = os.path.join(ERROR_LOGS_PATH, f"api_error_{timestamp}.log")
with open(log_path, 'w', encoding='utf-8') as f:
f.write(f"Timestamp: {datetime.datetime.now().isoformat()}\n")
f.write(f"Model: {model_id}\n")
f.write(f"User message: {user_message}\n")
f.write(f"Error: {error_message}\n")
f.write(f"Fallback attempt: {is_fallback}\n")
logger.info(f"API error logged to {log_path}")
except Exception as e:
logger.error(f"Failed to log API error: {str(e)}")
def update_kb():
"""Function to update existing knowledge base with new documents"""
try:
# Вызываем функцию для обновления базы знаний
success, message = create_vector_store(mode="update")
# Если обновление успешно, сохраняем метаданные с датой обновления
if success:
save_kb_metadata()
return message
except Exception as e:
return f"Error updating knowledge base: {str(e)}"
def rebuild_kb():
"""Function to create knowledge base from scratch"""
try:
# Вызываем функцию для пересоздания базы знаний
success, message = create_vector_store(mode="rebuild")
# Если создание успешно, сохраняем метаданные с датой обновления
if success:
save_kb_metadata()
return message
except Exception as e:
return f"Error creating knowledge base: {str(e)}"
def save_kb_metadata():
"""Save knowledge base metadata to dataset"""
try:
# Создаем метаданные с текущей датой
metadata = {
"last_updated": datetime.datetime.now().isoformat(),
"source_count": len(URLS),
"sources": URLS
}
# Сохраняем в датасет
json_content = json.dumps(metadata, indent=2).encode('utf-8')
api = HfApi(token=HF_TOKEN)
# Убедимся, что директория существует
try:
files = api.list_repo_files(
repo_id=DATASET_ID,
repo_type="dataset"
)
if "vector_store" not in files:
# Создаем пустой файл, чтобы создать директорию
api.upload_file(
path_or_fileobj=b"",
path_in_repo="vector_store/.gitkeep",
repo_id=DATASET_ID,
repo_type="dataset"
)
except Exception as e:
logger.warning(f"Error checking vector_store directory: {str(e)}")
# Загружаем метаданные
api.upload_file(
path_or_fileobj=json_content,
path_in_repo="vector_store/metadata.json",
repo_id=DATASET_ID,
repo_type="dataset"
)
logger.info("Knowledge base metadata saved successfully")
return True
except Exception as e:
logger.error(f"Error saving knowledge base metadata: {str(e)}")
return False
def save_chat_history(history, conversation_id):
"""Save chat history to a file and to HuggingFace dataset"""
try:
# Create directory if it doesn't exist
os.makedirs(DATASET_CHAT_HISTORY_PATH, exist_ok=True)
# Format history for saving
formatted_history = []
for item in history:
# Handle dictionary format
if isinstance(item, dict) and 'role' in item and 'content' in item:
formatted_history.append({
"role": item["role"],
"content": item["content"],
"timestamp": datetime.datetime.now().isoformat()
})
# Create filename with conversation_id and timestamp
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
filename = f"{conversation_id}_{timestamp}.json"
filepath = os.path.join(DATASET_CHAT_HISTORY_PATH, filename)
# Create chat history data
chat_data = {
"conversation_id": conversation_id,
"timestamp": datetime.datetime.now().isoformat(),
"history": formatted_history
}
# Save to local file
with open(filepath, 'w', encoding='utf-8') as f:
json.dump(chat_data, f, ensure_ascii=False, indent=2)
logger.debug(f"Chat history saved locally to {filepath}")
# Now upload to HuggingFace dataset
try:
from huggingface_hub import HfApi
# Initialize the Hugging Face API client
api = HfApi(token=HF_TOKEN)
# Extract just the directory name from DATASET_CHAT_HISTORY_PATH
dir_name = os.path.basename(DATASET_CHAT_HISTORY_PATH)
target_path = f"{dir_name}/{filename}"
# Upload the file to the dataset
api.upload_file(
path_or_fileobj=filepath,
path_in_repo=target_path,
repo_id=DATASET_ID,
repo_type="dataset"
)
logger.debug(f"Chat history uploaded to dataset at {target_path}")
except Exception as e:
logger.warning(f"Failed to upload chat history to dataset: {str(e)}")
# Continue execution even if upload fails
return True
except Exception as e:
logger.error(f"Error saving chat history: {str(e)}")
return False
def respond_and_clear(message, history, conversation_id, system_prompt):
"""Wrapper function with proper output handling"""
try:
# Generate a conversation ID if none exists
if not conversation_id:
conversation_id = f"conv_{datetime.datetime.now().strftime('%Y%m%d%H%M%S')}_{os.urandom(4).hex()}"
logger.info(f"Generated new conversation ID: {conversation_id}")
# Get current model parameters
params = ACTIVE_MODEL['parameters']
# Call respond function
result = respond(
message=message,
history=history if history else [],
conversation_id=conversation_id,
system_message=system_prompt, # Using provided prompt instead of default
max_tokens=params['max_length'],
temperature=params['temperature'],
top_p=params['top_p']
)
if not result:
raise ValueError("Empty response from API")
new_history, new_conv_id = result
# Save chat history
save_chat_history(new_history, conversation_id) # Use our guaranteed non-null ID
return new_history, conversation_id, "" # Return our guaranteed non-null ID
except Exception as e:
logger.error(f"Error in respond_and_clear: {str(e)}")
# Create safe error response
error_history = [
*history,
{"role": "user", "content": message},
{"role": "assistant", "content": "⚠️ An error occurred while processing the message. Please try again."}
]
return error_history, conversation_id, ""
def update_model_info(model_key):
"""Update model information display"""
if model_key not in MODELS:
return "Model not found"
model = MODELS[model_key]
account_status = "FREE"
return f"""
### Current Model: {model['name']}
**Account Type:** {account_status}
**Model ID:** {model['id']}
**Description:** {model['description']}
**Type:** {model['type']}
"""
def get_model_details_html(model_key):
"""Get detailed HTML for model information panel"""
if model_key not in MODELS or 'details' not in MODELS[model_key]:
return "<p>Model information not available</p>"
details = MODELS[model_key]['details']
html = f"""
<div style="padding: 15px; border: 1px solid #ccc; border-radius: 5px; margin-top: 10px;">
<h3>{details['full_name']}</h3>
<h4>Capabilities:</h4>
<ul>
{"".join([f"<li>{cap}</li>" for cap in details['capabilities']])}
</ul>
<h4>Limitations:</h4>
<ul>
{"".join([f"<li>{lim}</li>" for lim in details['limitations']])}
</ul>
<h4>Recommended Use Cases:</h4>
<ul>
{"".join([f"<li>{use}</li>" for use in details['use_cases']])}
</ul>
<p><a href="{details['documentation']}" target="_blank">Model Documentation</a></p>
</div>
"""
return html
def change_model(model_key):
"""Change active model and update parameters"""
global client, ACTIVE_MODEL, fallback_model_attempted
try:
# Reset fallback flag when explicitly changing model
fallback_model_attempted = False
# Update active model
ACTIVE_MODEL = MODELS[model_key]
# Reinitialize client with new model
client = InferenceClient(
ACTIVE_MODEL["id"],
token=HF_TOKEN
)
# Save selected model in preferences
save_user_preferences(model_key)
# Return both model info and updated parameters
return (
update_model_info(model_key),
ACTIVE_MODEL['parameters']['max_length'],
ACTIVE_MODEL['parameters']['temperature'],
ACTIVE_MODEL['parameters']['top_p'],
ACTIVE_MODEL['parameters']['repetition_penalty'],
f"Model changed to {ACTIVE_MODEL['name']}"
)
except Exception as e:
return (
f"Error changing model: {str(e)}",
2048, 0.7, 0.9, 1.1,
f"Error: {str(e)}"
)
def save_parameters(model_key, max_len, temp, top_p_val, rep_pen):
"""Save user-defined parameters to active model"""
global ACTIVE_MODEL
try:
# Update parameters
ACTIVE_MODEL['parameters']['max_length'] = max_len
ACTIVE_MODEL['parameters']['temperature'] = temp
ACTIVE_MODEL['parameters']['top_p'] = top_p_val
ACTIVE_MODEL['parameters']['repetition_penalty'] = rep_pen
# Save parameters in preferences
params = {
'max_length': max_len,
'temperature': temp,
'top_p': top_p_val,
'repetition_penalty': rep_pen
}
save_user_preferences(model_key, params)
return "Parameters saved successfully!"
except Exception as e:
return f"Error saving parameters: {str(e)}"
def finetune_from_annotations(epochs=3, batch_size=4, learning_rate=2e-4, min_rating=4):
"""
Fine-tune model using annotated QA pairs
Args:
epochs: Number of training epochs
batch_size: Batch size for training
learning_rate: Learning rate
min_rating: Minimum average rating for including examples
Returns:
(success, message)
"""
try:
import tempfile
import os
from src.analytics.chat_evaluator import ChatEvaluator
from config.settings import HF_TOKEN, DATASET_ID, DATASET_CHAT_HISTORY_PATH
# Create evaluator
evaluator = ChatEvaluator(
hf_token=HF_TOKEN,
dataset_id=DATASET_ID,
chat_history_path=DATASET_CHAT_HISTORY_PATH # ???
)
# Create temporary file for training data
with tempfile.NamedTemporaryFile(mode='w+', suffix='.jsonl', delete=False) as temp_file:
temp_path = temp_file.name
# Export high-quality examples
success, message = evaluator.export_training_data(temp_path, min_rating)
if not success:
return False, f"Failed to export training data: {message}"
# Count examples
with open(temp_path, 'r') as f:
example_count = sum(1 for _ in f)
if example_count == 0:
return False, "No high-quality examples found for fine-tuning"
# Run actual fine-tuning using the export file
from src.training.fine_tuner import finetune_from_file
success, message = finetune_from_file(
training_file=temp_path,
epochs=epochs,
batch_size=batch_size,
learning_rate=learning_rate
)
# Clean up temporary file
try:
os.unlink(temp_path)
except:
pass
if success:
return True, f"Successfully fine-tuned model with {example_count} annotated examples: {message}"
else:
return False, f"Fine-tuning failed: {message}"
except Exception as e:
return False, f"Error during fine-tuning from annotations: {str(e)}"
def save_system_prompt(prompt_text):
"""Save system prompt to user preferences"""
try:
preferences = load_user_preferences()
# Add prompt to preferences
if "system_prompt" not in preferences:
preferences["system_prompt"] = {}
preferences["system_prompt"]["current"] = prompt_text
# Save preferences
json_content = json.dumps(preferences, indent=2).encode('utf-8')
api = HfApi(token=HF_TOKEN)
api.upload_file(
path_or_fileobj=io.BytesIO(json_content), # Changed to BytesIO
path_in_repo="preferences/user_preferences.json",
repo_id=DATASET_ID,
repo_type="dataset"
)
return "System prompt saved successfully"
except Exception as e:
logger.error(f"Error saving system prompt: {str(e)}")
return f"Error saving prompt: {str(e)}"
def delete_conversation_from_huggingface(conversation_id):
"""
Delete conversation files from Hugging Face dataset by ID
Args:
conversation_id: ID of conversation to delete
Returns:
Success status (bool) and message (str)
"""
try:
if not conversation_id:
return False, "No conversation ID provided"
# Initialize API
api = HfApi(token=HF_TOKEN)
# Get list of files in dataset
try:
# Get all files in dataset
files = api.list_repo_files(
repo_id=DATASET_ID,
repo_type="dataset"
)
# Find files with matching conversation ID in chat history
# В пути может быть chat_history или chat-history
chat_dir = os.path.basename(DATASET_CHAT_HISTORY_PATH)
chat_files = [
file for file in files
if (file.startswith(f"{chat_dir}/") or file.startswith(f"chat_history/") or file.startswith(f"chat-history/")) and
f"{conversation_id}_" in os.path.basename(file)
]
if not chat_files:
return False, f"No chat files found for conversation ID: {conversation_id}"
# Delete each matching file
for file_path in chat_files:
try:
api.delete_file(
repo_id=DATASET_ID,
repo_type="dataset",
path_in_repo=file_path
)
logger.info(f"Deleted file from HF dataset: {file_path}")
except Exception as e:
logger.error(f"Error deleting file {file_path} from dataset: {str(e)}")
# Try to delete annotation file if it exists
# Учитываем разные варианты пути к аннотациям
annotations_base = os.path.basename(DATASET_ANNOTATIONS_PATH)
annotation_paths = [
f"{annotations_base}/annotation_{conversation_id}.json"
]
for annotation_path in annotation_paths:
try:
if annotation_path in files:
api.delete_file(
repo_id=DATASET_ID,
repo_type="dataset",
path_in_repo=annotation_path
)
logger.info(f"Deleted annotation file from HF dataset: {annotation_path}")
except Exception as e:
# It's okay if annotation file doesn't exist
logger.debug(f"Could not delete annotation file {annotation_path}: {str(e)}")
return True, f"Deleted {len(chat_files)} file(s) from dataset for conversation: {conversation_id}"
except Exception as e:
return False, f"Dataset access error: {str(e)}"
except Exception as e:
logger.error(f"Error deleting conversation from dataset: {str(e)}")
return False, f"Error deleting conversation from dataset: {str(e)}"
def delete_conversation(conversation_id, evaluator):
"""
Delete conversation files by ID
Args:
conversation_id: ID of conversation to delete
evaluator: ChatEvaluator instance
Returns:
Message about deletion status
"""
try:
if not conversation_id:
return "Error: No conversation ID provided"
# Используем HF API напрямую для удаления
success, message = delete_conversation_from_huggingface(conversation_id)
if not success:
return f"Error deleting conversation: {message}"
# Сбрасываем кэш evaluator'а после удаления
evaluator.reset_cache()
return f"Successfully deleted conversation: {conversation_id}"
except Exception as e:
logger.error(f"Error deleting conversation: {str(e)}")
return f"Error deleting conversation: {str(e)}"
def initialize_app():
"""Initialize app with user preferences"""
global client, ACTIVE_MODEL
preferences = load_user_preferences()
selected_model = preferences.get("selected_model", DEFAULT_MODEL)
# Make sure the selected model exists
if selected_model not in MODELS:
selected_model = DEFAULT_MODEL
# Set active model
ACTIVE_MODEL = MODELS[selected_model]
# Load saved parameters if they exist
saved_params = preferences.get("parameters", {}).get(selected_model)
if saved_params:
ACTIVE_MODEL['parameters'].update(saved_params)
# Initialize client
client = InferenceClient(
ACTIVE_MODEL["id"],
token=HF_TOKEN
)
# Load saved system prompt from preferences or use DEFAULT_SYSTEM_MESSAGE
system_prompt_text = DEFAULT_SYSTEM_MESSAGE
if "system_prompt" in preferences and "current" in preferences["system_prompt"]:
system_prompt_text = preferences["system_prompt"]["current"]
logger.info(f"App initialized with model: {ACTIVE_MODEL['name']}")
logger.info(f"Chat histories will be saved to: {DATASET_CHAT_HISTORY_PATH}")
return selected_model, system_prompt_text
def initialize_chat_evaluator():
"""Initialize chat evaluator with proper paths"""
try:
evaluator = ChatEvaluator(
hf_token=HF_TOKEN,
dataset_id=DATASET_ID
)
# Check if directories exist
os.makedirs(DATASET_CHAT_HISTORY_PATH, exist_ok=True)
os.makedirs(os.path.join(DATASET_ANNOTATIONS_PATH), exist_ok=True)
logger.debug(f"Chat history path: {DATASET_CHAT_HISTORY_PATH}")
logger.debug(f"Number of chat files: {len(os.listdir(DATASET_CHAT_HISTORY_PATH))}")
return evaluator
except Exception as e:
logger.error(f"Error initializing chat evaluator: {str(e)}")
raise
# Initialize HF client with token at startup
selected_model, saved_system_prompt = initialize_app()
# Initialize evaluator before creating interface
chat_evaluator = initialize_chat_evaluator()
# Create interface
with gr.Blocks(css="""
.table-container {
max-height: 400px;
overflow-y: auto;
}
""") as demo:
# Define clear_conversation function within the block for component access
def clear_conversation():
"""Clear conversation and save history before clearing"""
return [], None # Just return empty values
# Create State for evaluator
evaluator_state = gr.State(value=chat_evaluator)
with gr.Tabs():
with gr.Tab("Chat"):
gr.Markdown("# ⚖️ Status Law Assistant")
conversation_id = gr.State(None)
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
label="Chat",
avatar_images=None,
type='messages' # This is the key setting - use 'messages' format
)
with gr.Row():
msg = gr.Textbox(
label="Your question",
placeholder="Enter your question...",
scale=4
)
submit_btn = gr.Button("Send", variant="primary")
clear_btn = gr.Button("Clear")
with gr.Row(equal_height=True):
#with gr.Column(scale=1):
# gr.Markdown("") # Empty column for centering
with gr.Column(scale=40):
system_prompt = gr.TextArea(
label="System Prompt (editing will change bot behavior)",
value=saved_system_prompt,
placeholder="Enter system prompt...",
lines=8
)
#with gr.Column(scale=1):
# gr.Markdown("") # Empty column for centering
# Add event handlers
# Обновляем обработчики событий
submit_btn.click(
respond_and_clear,
[msg, chatbot, conversation_id, system_prompt], # Добавляем system_prompt
[chatbot, conversation_id, msg]
)
# Обновляем обработчик нажатия Enter
msg.submit(
respond_and_clear,
[msg, chatbot, conversation_id, system_prompt], # Добавляем system_prompt
[chatbot, conversation_id, msg]
)
# Добавляем обработчик изменения промпта
system_prompt_status = gr.Textbox(
label="Status",
interactive=False,
visible=True
)
system_prompt.change(
save_system_prompt,
inputs=[system_prompt],
outputs=[system_prompt_status]
)
clear_btn.click(clear_conversation, None, [chatbot, conversation_id])
with gr.Tab("Knowledge Base"):
gr.Markdown("### Knowledge Base Management")
with gr.Row():
with gr.Column(scale=2):
# Отображение источников
gr.Markdown("#### Information Sources")
sources_list = gr.Dataframe(
value=pd.DataFrame({
"URL": URLS,
"Include": [True for _ in URLS],
"Status": ["Ready" for _ in URLS]
}),
interactive=True,
wrap=True,
row_count=15,
show_label=False
)
# Статус операций с базой знаний
kb_status = gr.Textbox(
label="Operation Status",
interactive=False,
placeholder="Ready",
value="Ready"
)
# Кнопки для управления базой знаний
with gr.Row():
update_kb_btn = gr.Button("Update Knowledge Base", variant="primary")
rebuild_kb_btn = gr.Button("Rebuild Knowledge Base from Scratch", variant="secondary")
gr.Markdown("""
<small>
**Update Knowledge Base**: Adds new information to the existing knowledge base.
**Rebuild Knowledge Base**: Recreates the entire knowledge base from scratch. Use this if there are inconsistencies.
All changes are saved to the Hugging Face dataset.
</small>
""")
with gr.Column(scale=1):
# Информация о текущей базе знаний
gr.Markdown("#### Knowledge Base Information")
# Функция для получения информации о базе знаний
def get_kb_info() -> str:
"""
Get information about the current state of the knowledge base.
Returns:
str: Formatted markdown string containing knowledge base statistics
"""
try:
vector_store = load_vector_store()
if vector_store is None or isinstance(vector_store, str):
return """
**Status**: Not found or error
**Documents**: 0
**Last updated**: Never
Please create a knowledge base using the buttons on the left.
"""
# Get information about vector store
doc_count = len(vector_store.docstore._dict)
sources = set()
for doc_id, doc in vector_store.docstore._dict.items():
if hasattr(doc, 'metadata') and 'source' in doc.metadata:
sources.add(doc.metadata['source'])
source_count = len(sources)
# Если хранилище существует, но источников нет
if source_count == 0:
return """
**Status**: Created but empty
**Documents**: 0
**Last updated**: Unknown
Please rebuild the knowledge base using the button on the left.
"""
# Получаем файл с датой последнего обновления
last_updated = "Unknown"
try:
from src.knowledge_base.dataset import DatasetManager
dataset = DatasetManager()
last_updated = dataset.get_last_update_date() or "Unknown"
except Exception as e:
logger.error(f"Error getting last update date: {str(e)}")
return f"""
**Status**: Active
**Documents**: {doc_count}
**Sources**: {source_count}
**Last updated**: {last_updated}
"""
except Exception as e:
return f"""
**Status**: Error
**Details**: {str(e)}
Please try rebuilding the knowledge base.
"""
kb_info = gr.Markdown(value=get_kb_info())
refresh_kb_info_btn = gr.Button("Refresh Information")
# 3. Добавим обработчики событий для кнопок в конце файла
# Добавьте эти обработчики перед строкой "if __name__ == "__main__":"
# Обработчики для Knowledge Base
update_kb_btn.click(
fn=update_kb_with_selected,
inputs=[sources_list],
outputs=[kb_status]
)
rebuild_kb_btn.click(
fn=rebuild_kb_with_selected,
inputs=[sources_list],
outputs=[kb_status]
)
# Обновление информации о базе знаний
refresh_kb_info_btn.click(
fn=get_kb_info,
inputs=[],
outputs=[kb_info]
)
with gr.Tab("Model Settings"):
gr.Markdown("### Model Configuration")
with gr.Row():
with gr.Column(scale=2):
# Add model selector
model_selector = gr.Dropdown(
choices=list(MODELS.keys()),
value=selected_model, # Use loaded model from preferences
label="Select Model",
interactive=True
)
# Current model info display
model_info = gr.Markdown(value=update_model_info(selected_model))
# Status indicator for model loading
model_loading = gr.Textbox(
label="Status",
placeholder="Model ready",
interactive=False,
value="Model ready"
)
# Model Parameters - make them interactive
with gr.Row():
max_length = gr.Slider(
minimum=1,
maximum=4096,
value=ACTIVE_MODEL['parameters']['max_length'],
step=1,
label="Maximum Length",
interactive=True
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=ACTIVE_MODEL['parameters']['temperature'],
step=0.1,
label="Temperature",
interactive=True
)
with gr.Row():
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=ACTIVE_MODEL['parameters']['top_p'],
step=0.1,
label="Top-p",
interactive=True
)
rep_penalty = gr.Slider(
minimum=1.0,
maximum=2.0,
value=ACTIVE_MODEL['parameters']['repetition_penalty'],
step=0.1,
label="Repetition Penalty",
interactive=True
)
# Button to save parameters
save_params_btn = gr.Button("Save Parameters", variant="primary")
gr.Markdown("""
<small>
**Parameters explanation:**
- **Maximum Length**: Maximum number of tokens in the generated response
- **Temperature**: Controls randomness (0.1 = very focused, 2.0 = very creative)
- **Top-p**: Controls diversity via nucleus sampling (lower = more focused)
- **Repetition Penalty**: Prevents word repetition (higher = less repetition)
</small>
""")
with gr.Column(scale=1):
# Model details panel
model_details = gr.HTML(get_model_details_html(selected_model))
gr.Markdown("### Training Configuration")
gr.Markdown(f"""
**Base Model Path:**
```
{ACTIVE_MODEL['training']['base_model_path']}
```
**Fine-tuned Model Path:**
```
{ACTIVE_MODEL['training']['fine_tuned_path']}
```
**LoRA Configuration:**
- Rank (r): {ACTIVE_MODEL['training']['lora_config']['r']}
- Alpha: {ACTIVE_MODEL['training']['lora_config']['lora_alpha']}
- Dropout: {ACTIVE_MODEL['training']['lora_config']['lora_dropout']}
""")
with gr.Tab("Model Training"):
gr.Markdown("### Model Training Interface")
with gr.Row():
with gr.Column(scale=1):
training_tabs = gr.Tabs()
with training_tabs:
with gr.TabItem("Regular Training"):
epochs = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="Number of Epochs")
batch_size = gr.Slider(minimum=1, maximum=32, value=4, step=1, label="Batch Size")
learning_rate = gr.Slider(minimum=1e-6, maximum=1e-3, value=2e-4, label="Learning Rate")
train_btn = gr.Button("Start Training", variant="primary")
training_output = gr.Textbox(label="Training Status", interactive=False)
with gr.TabItem("Train from Annotations"):
annot_epochs = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="Number of Epochs")
annot_batch_size = gr.Slider(minimum=1, maximum=32, value=4, step=1, label="Batch Size")
annot_learning_rate = gr.Slider(minimum=1e-6, maximum=1e-3, value=2e-4, label="Learning Rate")
annot_min_rating = gr.Slider(minimum=1, maximum=5, value=4, step=0.5, label="Minimum Rating for Training")
annot_train_btn = gr.Button("Start Training from Annotations", variant="primary")
annot_training_output = gr.Textbox(label="Training Status", interactive=False)
gr.Markdown("""
<small>
**Epochs:**
Lower = Faster training -> Higher = Model learns more thoroughly
Best for small datasets: 3-5 -> Best for large datasets: 1-2
**Batch Size:**
Lower = Slower but more stable -> Higher = Faster but needs more RAM
4 = Good for 16GB RAM -> 8 = Good for 32GB RAM
**Learning Rate:**
Lower = Learns slower but more reliable -> Higher = Learns faster but may be unstable
2e-4 (0.0002) = Usually works best -> 1e-4 = Safer choice for fine-tuning
</small>
""")
with gr.Column(scale=1):
analysis_btn = gr.Button("Generate Chat Analysis")
analysis_output = gr.Markdown()
train_btn.click(
start_finetune_action,
inputs=[epochs, batch_size, learning_rate],
outputs=[training_output]
)
# Function to handle training from annotations
def start_annotation_finetune(epochs, batch_size, learning_rate, min_rating):
"""Wrapper function to start fine-tuning from annotations"""
success, message = finetune_from_annotations(
epochs=epochs,
batch_size=batch_size,
learning_rate=learning_rate,
min_rating=min_rating
)
return message
annot_train_btn.click(
start_annotation_finetune,
inputs=[annot_epochs, annot_batch_size, annot_learning_rate, annot_min_rating],
outputs=[annot_training_output]
)
analysis_btn.click(
generate_chat_analysis,
inputs=[],
outputs=[analysis_output]
)
with gr.Tab("Chat Evaluation"):
gr.Markdown("### Evaluation of Chat Responses")
with gr.Row():
with gr.Column(scale=1):
# Status section
evaluation_status = gr.Textbox(
label="Evaluation Status",
interactive=False,
show_label=True
)
refresh_status_btn = gr.Button("Refresh Status and Chat History")
# Moved refresh status and evaluation report here
refresh_data_status = gr.Textbox(
label="Refresh Status",
interactive=False,
show_label=True
)
evaluation_report = gr.HTML(label="Evaluation Report")
refresh_report_btn = gr.Button("Generate Report")
# QA pairs table section
show_evaluated = gr.Checkbox(
label="Show Only Evaluated Pairs",
value=False
)
qa_table = gr.Dataframe(
value=pd.DataFrame(
columns=["Conversation ID", "Question", "Answer", "Evaluated"]
),
interactive=True,
wrap=True,
row_count=15, # Changed from height to row_count
show_label=True
)
# Conversation selection section
gr.Markdown("### Select Conversation to Evaluate")
with gr.Row():
selected_conversation = gr.Textbox(
label="Conversation ID",
placeholder="Select from table above",
interactive=True
)
load_btn = gr.Button("Load Conversation")
delete_btn = gr.Button("Delete Conversation", variant="stop")
delete_status = gr.Textbox(label="Delete Status", interactive=False)
# Conversation content section
gr.Markdown("### Evaluate Response")
question_display = gr.Textbox(label="User Question", interactive=False)
original_answer = gr.TextArea(label="Original Bot Answer", interactive=False)
improved_answer = gr.TextArea(label="Improved Answer (Gold Standard)", interactive=True)
# Ratings section
gr.Markdown("### Quality Ratings (1-5)")
with gr.Row():
accuracy = gr.Slider(minimum=1, maximum=5, value=3, step=1, label="Factual Accuracy")
completeness = gr.Slider(minimum=1, maximum=5, value=3, step=1, label="Completeness")
with gr.Row():
relevance = gr.Slider(minimum=1, maximum=5, value=3, step=1, label="Relevance")
clarity = gr.Slider(minimum=1, maximum=5, value=3, step=1, label="Clarity")
legal_correctness = gr.Slider(minimum=1, maximum=5, value=3, step=1, label="Legal Correctness")
# Notes and save section
notes = gr.TextArea(label="Evaluator Notes", placeholder="Add your notes about this response...")
save_btn = gr.Button("Save Evaluation", variant="primary")
evaluation_status_msg = gr.Textbox(label="Status", interactive=False)
# Data export section
gr.Markdown("### Export Evaluation Data")
with gr.Row():
min_rating = gr.Slider(minimum=1, maximum=5, value=4, step=0.5, label="Minimum Rating for Export")
export_path = gr.Textbox(label="Export File Path", value="training_data.jsonl")
export_btn = gr.Button("Export Training Data")
export_status = gr.Textbox(label="Export Status", interactive=False)
# Event handlers for Chat Evaluation
refresh_status_btn.click(
fn=lambda: get_evaluation_status(chat_evaluator, force_reload=True),
inputs=[],
outputs=[evaluation_status, qa_table, refresh_data_status]
)
refresh_report_btn.click(
fn=lambda: generate_evaluation_report_html(chat_evaluator),
inputs=[],
outputs=[evaluation_report]
)
show_evaluated.change(
fn=lambda x: get_qa_pairs_dataframe(chat_evaluator, x),
inputs=[show_evaluated],
outputs=[qa_table]
)
def on_table_select(evt: gr.SelectData, dataframe):
"""Handle table row selection using the dataframe input"""
try:
# Get the selected row index
row_index = evt.index[0]
# Access the dataframe passed as input parameter
if dataframe is not None and len(dataframe) > row_index:
# Get conversation ID from first column
conversation_id = str(dataframe.iloc[row_index, 0])
logger.info(f"Selected conversation ID: {conversation_id}")
return conversation_id
else:
logger.error("DataFrame is empty or row index out of bounds")
return ""
except Exception as e:
logger.error(f"Error in table selection: {str(e)}")
import traceback
logger.error(traceback.format_exc())
return ""
# Update the table row selection handler to include the dataframe as input
qa_table.select(
fn=on_table_select,
inputs=[qa_table], # Pass the table itself as input
outputs=[selected_conversation]
)
# Load conversation for evaluation
load_btn.click(
fn=lambda x: load_qa_pair_for_evaluation(conversation_id=x, evaluator=chat_evaluator),
inputs=[selected_conversation],
outputs=[question_display, original_answer, improved_answer,
accuracy, completeness, relevance, clarity, legal_correctness, notes]
)
# Save evaluation
save_btn.click(
fn=lambda conv_id, q, orig_a, imp_a, acc, comp, rel, clar, legal, notes:
save_evaluation(conv_id, q, orig_a, imp_a, acc, comp, rel, clar, legal, notes, evaluator=chat_evaluator),
inputs=[
selected_conversation, question_display, original_answer, improved_answer,
accuracy, completeness, relevance, clarity, legal_correctness, notes
],
outputs=[evaluation_status_msg]
)
# Export training data
export_btn.click(
fn=lambda min_r, path: export_training_data_action(chat_evaluator, min_r, path),
inputs=[min_rating, export_path],
outputs=[export_status]
)
# Обработчик для удаления чата
delete_btn.click(
fn=delete_conversation,
inputs=[selected_conversation, evaluator_state],
outputs=[delete_status]
)
# Обновление таблицы и статуса после удаления
delete_btn.click(
fn=lambda: get_evaluation_status(chat_evaluator, force_reload=True),
inputs=[],
outputs=[evaluation_status, qa_table, refresh_data_status]
)
# Model change handler - outside of Tabs but inside Blocks
model_selector.change(
fn=change_model,
inputs=[model_selector],
outputs=[model_info, max_length, temperature, top_p, rep_penalty, model_loading]
)
# Update model details panel when changing model
model_selector.change(
fn=get_model_details_html,
inputs=[model_selector],
outputs=[model_details]
)
# Parameter save handler
save_params_btn.click(
fn=save_parameters,
inputs=[model_selector, max_length, temperature, top_p, rep_penalty],
outputs=[model_loading]
)
# Launch application
if __name__ == "__main__":
# Проверяем knowledge base
if not load_vector_store():
logger.warning("Knowledge base not found. Please create it through the interface.")
demo.launch(share=True)
|