File size: 9,504 Bytes
61a383e
 
 
 
 
 
 
 
 
 
 
75bf67b
61a383e
75bf67b
61a383e
 
 
75bf67b
61a383e
 
75bf67b
61a383e
75bf67b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4903398
75bf67b
 
61a383e
75bf67b
61a383e
75bf67b
61a383e
 
 
c564619
75bf67b
61a383e
 
 
 
75bf67b
c564619
75bf67b
61a383e
75bf67b
 
 
61a383e
c564619
 
 
 
61a383e
75bf67b
 
 
 
 
 
 
 
4903398
75bf67b
 
 
 
 
 
 
4903398
c564619
75bf67b
 
 
4903398
61a383e
661da28
61a383e
 
 
 
 
0434884
61a383e
 
661da28
 
61a383e
 
 
 
f53d840
da199b7
61a383e
f53d840
 
 
da199b7
 
f53d840
 
 
 
 
 
 
 
 
 
 
 
 
da199b7
f53d840
 
 
 
 
 
 
 
 
 
61a383e
 
 
 
 
 
 
 
 
 
 
2c97b8a
 
61a383e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48fb8a1
61a383e
 
 
 
48fb8a1
61a383e
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
"""
Interface components for chat evaluation
"""

import gradio as gr
import pandas as pd
from src.analytics.chat_evaluator import ChatEvaluator
import json
import os
from typing import Dict, Any, List, Tuple

def get_evaluation_status(evaluator, force_reload=False):
    """
    Get evaluation status as formatted string and refresh QA data
    
    Args:
        evaluator: ChatEvaluator instance
        force_reload: If True, force reload data from dataset
        
    Returns:
        Status message, updated QA table and refresh message
    """
    try:
        # First, reset cache if forcing reload
        if force_reload:
            evaluator.reset_cache()
            
        # Get status data
        status = evaluator.get_evaluation_status(force_reload=force_reload)
        
        # Get updated QA table
        qa_table = get_qa_pairs_dataframe(evaluator, show_evaluated=False, force_reload=force_reload)
        
        status_message = f"""
        Total QA Pairs: {status['total_qa_pairs']}
        Evaluated Pairs: {status['evaluated_pairs']}
        Unevaluated Pairs: {status['unevaluated_pairs']}
        Evaluated Conversations: {status['evaluated_conversations']}
        """
        
        refresh_message = "Data refreshed successfully" if force_reload else ""
        
        return status_message, qa_table, refresh_message
    except Exception as e:
        logger.error(f"Error getting evaluation status: {e}")
        
        # Import pandas here to avoid circular imports
        import pandas as pd
        empty_df = pd.DataFrame(columns=["Conversation ID", "Question", "Answer", "Evaluated"])
        
        return f"Error getting status: {str(e)}", empty_df, f"Error: {str(e)}"

def get_qa_pairs_dataframe(evaluator, show_evaluated=False, force_reload=False):
    """
    Get QA pairs as DataFrame for the evaluation interface
    
    Args:
        evaluator: ChatEvaluator instance
        show_evaluated: If True, show only evaluated pairs. If False, show all pairs
        force_reload: If True, force reload from dataset
        
    Returns:
        DataFrame with QA pairs
    """
    try:
        # Get QA pairs
        qa_pairs = evaluator.get_qa_pairs_for_evaluation(limit=100, force_reload=force_reload)
        
        # Get annotations
        annotations = evaluator.get_annotations(force_reload=force_reload)
        evaluated_ids = {a.get("conversation_id") for a in annotations}
        
        # Filter pairs based on show_evaluated flag
        if show_evaluated:
            # Show only evaluated pairs
            qa_pairs = [qa for qa in qa_pairs if qa["conversation_id"] in evaluated_ids]
        
        # Convert to DataFrame
        if qa_pairs:
            import pandas as pd
            
            df = pd.DataFrame([
                {
                    "Conversation ID": qa["conversation_id"],
                    "Question": qa["question"][:50] + "..." if len(qa["question"]) > 50 else qa["question"],
                    "Answer": qa["original_answer"][:100] + "..." if len(qa["original_answer"]) > 100 else qa["original_answer"],
                    "Evaluated": "Yes" if qa["conversation_id"] in evaluated_ids else "No"
                }
                for qa in qa_pairs
            ])
            return df
        else:
            import pandas as pd
            return pd.DataFrame(columns=["Conversation ID", "Question", "Answer", "Evaluated"])
            
    except Exception as e:
        logger.error(f"Error getting QA pairs dataframe: {e}")
        import pandas as pd
        return pd.DataFrame(columns=["Conversation ID", "Question", "Answer", "Evaluated"])

def load_qa_pair_for_evaluation(conversation_id: str, evaluator: ChatEvaluator) -> Tuple[str, str, str, int, int, int, int, int, str]:
    """
    Load a QA pair for evaluation
    
    Args:
        conversation_id: ID of the conversation to load
        evaluator: ChatEvaluator instance
        
    Returns:
        Tuple of (question, original_answer, improved_answer, accuracy, completeness, 
                 relevance, clarity, legal_correctness, notes)
    """
    # Get all QA pairs
    qa_pairs = evaluator.get_qa_pairs_for_evaluation(limit=1000)
    
    # Get existing annotation if any
    annotation = evaluator.get_annotation(conversation_id)
    
    if annotation:
        return (
            annotation.get("question", ""),
            annotation.get("original_answer", ""),  # Changed from original_answer
            annotation.get("improved_answer", ""),  # Changed from improved_answer
            annotation.get("ratings", {}).get("accuracy", 1),
            annotation.get("ratings", {}).get("completeness", 1),
            annotation.get("ratings", {}).get("relevance", 1),
            annotation.get("ratings", {}).get("clarity", 1),
            annotation.get("ratings", {}).get("legal_correctness", 1),
            annotation.get("notes", "")
        )
    
    # If no annotation exists, find the conversation in QA pairs
    for qa_pair in qa_pairs:
        if qa_pair.get("conversation_id") == conversation_id:
            return (
                qa_pair.get("question", ""),
                qa_pair.get("original_answer", ""),  # Changed from answer
                "",  # Empty improved answer
                1,   # Default ratings
                1,
                1,
                1,
                1,
                ""   # Empty notes
            )
            
    return "", "", "", 1, 1, 1, 1, 1, ""  # Return empty values if not found

def save_evaluation(
    conversation_id: str,
    question: str,
    original_answer: str,
    improved_answer: str,
    accuracy: int,
    completeness: int,
    relevance: int,
    clarity: int,
    legal_correctness: int,
    notes: str,
    evaluator: ChatEvaluator
) -> str:
    """
    Save evaluation to file and dataset
    
    Args:
        evaluator: ChatEvaluator instance
        conversation_id: ID of the conversation
        question: User question
        original_answer: Original bot answer
        improved_answer: Improved answer
        accuracy: Rating for factual accuracy (1-5)
        completeness: Rating for completeness (1-5)
        relevance: Rating for relevance (1-5)
        clarity: Rating for clarity (1-5)
        legal_correctness: Rating for legal correctness (1-5)
        notes: Evaluator notes
        
    Returns:
        Status message
    """
    # Create ratings dictionary
    ratings = {
        "accuracy": accuracy,
        "completeness": completeness,
        "relevance": relevance,
        "clarity": clarity,
        "legal_correctness": legal_correctness
    }
    
    # Save annotation
    success, message = evaluator.save_annotation(
        conversation_id=conversation_id,
        question=question,
        original_answer=original_answer,
        improved_answer=improved_answer,
        ratings=ratings,
        notes=notes
    )
    
    return message

def generate_evaluation_report_html(evaluator: ChatEvaluator) -> str:
    """
    Generate HTML report of evaluation metrics
    
    Args:
        evaluator: ChatEvaluator instance
        
    Returns:
        HTML string with report
    """
    report = evaluator.generate_evaluation_report()
    
    if report["total_evaluations"] == 0:
        return "<p>No evaluations available yet.</p>"
    
    # Format criteria averages
    criteria_html = ""
    for criterion, avg in report["criteria_averages"].items():
        # Calculate stars representation (1-5)
        stars = "β˜…" * int(avg) + "β˜†" * (5 - int(avg))
        criteria_html += f"""
        <tr>
            <td>{criterion.capitalize()}</td>
            <td>{avg:.2f}/5.0</td>
            <td>{stars}</td>
        </tr>
        """
    
    # Overall stars representation
    overall_stars = "β˜…" * int(report["overall_average"]) + "β˜†" * (5 - int(report["overall_average"]))
    
    html = f"""
    <div style="padding: 15px; border: 1px solid #ccc; border-radius: 5px; margin-top: 10px;">
        <h3>Evaluation Report</h3>
        
        <p><strong>Total Evaluations:</strong> {report["total_evaluations"]}</p>
        <p><strong>Overall Average Rating:</strong> {report["overall_average"]:.2f}/5.0 {overall_stars}</p>
        <p><strong>Improvement Rate:</strong> {report["improvement_rate"]:.1f}% of responses were improved</p>
        
        <h4>Criteria Ratings:</h4>
        <table style="width: 100%; border-collapse: collapse;">
            <tr>
                <th style="text-align: left; padding: 8px; border-bottom: 1px solid #ddd;">Criterion</th>
                <th style="text-align: left; padding: 8px; border-bottom: 1px solid #ddd;">Average Score</th>
                <th style="text-align: left; padding: 8px; border-bottom: 1px solid #ddd;">Rating</th>
            </tr>
            {criteria_html}
        </table>
    </div>
    """
    
    return html

def export_training_data_action(evaluator: ChatEvaluator, min_rating: int, output_file: str) -> str:
    """
    Action for exporting training data
    
    Args:
        evaluator: ChatEvaluator instance
        min_rating: Minimum average rating (1-5)
        output_file: Output file path
        
    Returns:
        Status message
    """
    if not output_file:
        output_file = os.path.join(os.path.dirname(evaluator.annotations_dir), "training_data.jsonl")
    
    success, message = evaluator.export_training_data(output_file, min_rating)
    return message