Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -74,7 +74,88 @@ def return_num_columns(img):
|
|
| 74 |
label_p_pred = model_classifier.predict(img_in, verbose=0)
|
| 75 |
num_col = np.argmax(label_p_pred[0]) + 1
|
| 76 |
return num_col
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
def do_prediction(model_name, img):
|
| 79 |
img_org = np.copy(img)
|
| 80 |
model = from_pretrained_keras(model_name)
|
|
@@ -110,33 +191,11 @@ def do_prediction(model_name, img):
|
|
| 110 |
img_width_h = img_org.shape[1]
|
| 111 |
|
| 112 |
num_col_classifier = return_num_columns(img)
|
|
|
|
| 113 |
|
| 114 |
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
img_w_new = 1000
|
| 118 |
-
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
| 119 |
-
|
| 120 |
-
elif num_col_classifier == 2:
|
| 121 |
-
img_w_new = 1500
|
| 122 |
-
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
| 123 |
-
|
| 124 |
-
elif num_col_classifier == 3:
|
| 125 |
-
img_w_new = 2000
|
| 126 |
-
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
| 127 |
-
|
| 128 |
-
elif num_col_classifier == 4:
|
| 129 |
-
img_w_new = 2500
|
| 130 |
-
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
| 131 |
-
elif num_col_classifier == 5:
|
| 132 |
-
img_w_new = 3000
|
| 133 |
-
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
| 134 |
-
else:
|
| 135 |
-
img_w_new = 4000
|
| 136 |
-
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
| 137 |
-
img_resized = resize_image(img,img_h_new, img_w_new )
|
| 138 |
-
|
| 139 |
-
img = otsu_copy_binary(img_resized)
|
| 140 |
|
| 141 |
|
| 142 |
|
|
|
|
| 74 |
label_p_pred = model_classifier.predict(img_in, verbose=0)
|
| 75 |
num_col = np.argmax(label_p_pred[0]) + 1
|
| 76 |
return num_col
|
| 77 |
+
|
| 78 |
+
def return_scaled_image(img, num_col, width_early, model_name):
|
| 79 |
+
if model_name== ("SBB/eynollah-main-regions-aug-rotation" | "SBB/eynollah-main-regions-aug-scaling" | "SBB/eynollah-main-regions-ensembled"):
|
| 80 |
+
if num_col == 1 and width_early < 1100:
|
| 81 |
+
img_w_new = 2000
|
| 82 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * 2000)
|
| 83 |
+
elif num_col == 1 and width_early >= 2500:
|
| 84 |
+
img_w_new = 2000
|
| 85 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * 2000)
|
| 86 |
+
elif num_col == 1 and width_early >= 1100 and width_early < 2500:
|
| 87 |
+
img_w_new = width_early
|
| 88 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early)
|
| 89 |
+
elif num_col == 2 and width_early < 2000:
|
| 90 |
+
img_w_new = 2400
|
| 91 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * 2400)
|
| 92 |
+
elif num_col == 2 and width_early >= 3500:
|
| 93 |
+
img_w_new = 2400
|
| 94 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * 2400)
|
| 95 |
+
elif num_col == 2 and width_early >= 2000 and width_early < 3500:
|
| 96 |
+
img_w_new = width_early
|
| 97 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early)
|
| 98 |
+
elif num_col == 3 and width_early < 2000:
|
| 99 |
+
img_w_new = 3000
|
| 100 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * 3000)
|
| 101 |
+
elif num_col == 3 and width_early >= 4000:
|
| 102 |
+
img_w_new = 3000
|
| 103 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * 3000)
|
| 104 |
+
elif num_col == 3 and width_early >= 2000 and width_early < 4000:
|
| 105 |
+
img_w_new = width_early
|
| 106 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early)
|
| 107 |
+
elif num_col == 4 and width_early < 2500:
|
| 108 |
+
img_w_new = 4000
|
| 109 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * 4000)
|
| 110 |
+
elif num_col == 4 and width_early >= 5000:
|
| 111 |
+
img_w_new = 4000
|
| 112 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * 4000)
|
| 113 |
+
elif num_col == 4 and width_early >= 2500 and width_early < 5000:
|
| 114 |
+
img_w_new = width_early
|
| 115 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early)
|
| 116 |
+
elif num_col == 5 and width_early < 3700:
|
| 117 |
+
img_w_new = 5000
|
| 118 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * 5000)
|
| 119 |
+
elif num_col == 5 and width_early >= 7000:
|
| 120 |
+
img_w_new = 5000
|
| 121 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * 5000)
|
| 122 |
+
elif num_col == 5 and width_early >= 3700 and width_early < 7000:
|
| 123 |
+
img_w_new = width_early
|
| 124 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early)
|
| 125 |
+
elif num_col == 6 and width_early < 4500:
|
| 126 |
+
img_w_new = 6500 # 5400
|
| 127 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * 6500)
|
| 128 |
+
else:
|
| 129 |
+
img_w_new = width_early
|
| 130 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early)
|
| 131 |
+
img_new = resize_image(img, img_h_new, img_w_new)
|
| 132 |
+
if model_name=="SBB/eynollah-main-regions":
|
| 133 |
+
if num_col == 1:
|
| 134 |
+
img_w_new = 1000
|
| 135 |
+
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
| 136 |
+
|
| 137 |
+
elif num_col == 2:
|
| 138 |
+
img_w_new = 1500
|
| 139 |
+
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
| 140 |
+
|
| 141 |
+
elif num_col == 3:
|
| 142 |
+
img_w_new = 2000
|
| 143 |
+
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
| 144 |
+
|
| 145 |
+
elif num_col == 4:
|
| 146 |
+
img_w_new = 2500
|
| 147 |
+
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
| 148 |
+
elif num_col == 5:
|
| 149 |
+
img_w_new = 3000
|
| 150 |
+
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
| 151 |
+
else:
|
| 152 |
+
img_w_new = 4000
|
| 153 |
+
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
| 154 |
+
img_resized = resize_image(img,img_h_new, img_w_new )
|
| 155 |
+
|
| 156 |
+
img = otsu_copy_binary(img_resized)
|
| 157 |
+
return img
|
| 158 |
+
|
| 159 |
def do_prediction(model_name, img):
|
| 160 |
img_org = np.copy(img)
|
| 161 |
model = from_pretrained_keras(model_name)
|
|
|
|
| 191 |
img_width_h = img_org.shape[1]
|
| 192 |
|
| 193 |
num_col_classifier = return_num_columns(img)
|
| 194 |
+
width_early = img.shape[1]
|
| 195 |
|
| 196 |
|
| 197 |
+
img = return_scaled_image(img, num_col_classifier, width_early, model_name)
|
| 198 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
|
| 200 |
|
| 201 |
|