File size: 46,787 Bytes
18e4106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718

<!DOCTYPE html>


<html lang="zh-CN" data-content_root="../" >

  <head>
    <meta charset="utf-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />

    <title>代码实现 &#8212; PDF-Extract-Kit 0.1.0 文档</title>
  
  
  
  <script data-cfasync="false">
    document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
    document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
  </script>
  
  <!-- Loaded before other Sphinx assets -->
  <link href="../_static/styles/theme.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />
<link href="../_static/styles/bootstrap.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />
<link href="../_static/styles/pydata-sphinx-theme.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />

  
  <link href="../_static/vendor/fontawesome/6.5.2/css/all.min.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />
  <link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.5.2/webfonts/fa-solid-900.woff2" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.5.2/webfonts/fa-brands-400.woff2" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.5.2/webfonts/fa-regular-400.woff2" />

    <link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=a746c00c" />
    <link rel="stylesheet" type="text/css" href="../_static/styles/sphinx-book-theme.css?v=a3416100" />
    <link rel="stylesheet" type="text/css" href="../_static/copybutton.css?v=76b2166b" />
  
  <!-- Pre-loaded scripts that we'll load fully later -->
  <link rel="preload" as="script" href="../_static/scripts/bootstrap.js?digest=dfe6caa3a7d634c4db9b" />
<link rel="preload" as="script" href="../_static/scripts/pydata-sphinx-theme.js?digest=dfe6caa3a7d634c4db9b" />
  <script src="../_static/vendor/fontawesome/6.5.2/js/all.min.js?digest=dfe6caa3a7d634c4db9b"></script>

    <script src="../_static/documentation_options.js?v=2693749b"></script>
    <script src="../_static/doctools.js?v=9a2dae69"></script>
    <script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
    <script src="../_static/clipboard.min.js?v=a7894cd8"></script>
    <script src="../_static/copybutton.js?v=a5fa425f"></script>
    <script src="../_static/scripts/sphinx-book-theme.js?v=887ef09a"></script>
    <script src="../_static/translations.js?v=beaddf03"></script>
    <script>DOCUMENTATION_OPTIONS.pagename = 'task_extend/code';</script>
    <link rel="index" title="索引" href="../genindex.html" />
    <link rel="search" title="搜索" href="../search.html" />
    <link rel="next" title="文档补充" href="doc.html" />
    <link rel="prev" title="阅读顺序算法" href="../algorithm/reading_order.html" />
  <meta name="viewport" content="width=device-width, initial-scale=1"/>
  <meta name="docsearch:language" content="zh-CN"/>
  </head>
  
  
  <body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">

  
  
  <div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
  
  <div id="pst-scroll-pixel-helper"></div>
  
  <button type="button" class="btn rounded-pill" id="pst-back-to-top">
    <i class="fa-solid fa-arrow-up"></i>Back to top</button>

  
  <input type="checkbox"
          class="sidebar-toggle"
          id="pst-primary-sidebar-checkbox"/>
  <label class="overlay overlay-primary" for="pst-primary-sidebar-checkbox"></label>
  
  <input type="checkbox"
          class="sidebar-toggle"
          id="pst-secondary-sidebar-checkbox"/>
  <label class="overlay overlay-secondary" for="pst-secondary-sidebar-checkbox"></label>
  
  <div class="search-button__wrapper">
    <div class="search-button__overlay"></div>
    <div class="search-button__search-container">
<form class="bd-search d-flex align-items-center"
      action="../search.html"
      method="get">
  <i class="fa-solid fa-magnifying-glass"></i>
  <input type="search"
         class="form-control"
         name="q"
         id="search-input"
         placeholder="Search..."
         aria-label="Search..."
         autocomplete="off"
         autocorrect="off"
         autocapitalize="off"
         spellcheck="false"/>
  <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form></div>
  </div>

  <div class="pst-async-banner-revealer d-none">
  <aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>

  
    <header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
    </header>
  

  <div class="bd-container">
    <div class="bd-container__inner bd-page-width">
      
      
      
      <div class="bd-sidebar-primary bd-sidebar">
        

  
  <div class="sidebar-header-items sidebar-primary__section">
    
    
    
    
  </div>
  
    <div class="sidebar-primary-items__start sidebar-primary__section">
        <div class="sidebar-primary-item">

  
    
  

<a class="navbar-brand logo" href="../index.html">
  
  
  
  
  
    
    
      
    
    
    <img src="../_static/logo.png" class="logo__image only-light" alt="PDF-Extract-Kit 0.1.0 文档 - Home"/>
    <script>document.write(`<img src="../_static/logo.png" class="logo__image only-dark" alt="PDF-Extract-Kit 0.1.0 文档 - Home"/>`);</script>
  
  
</a></div>
        <div class="sidebar-primary-item">

 <script>
 document.write(`
   <button class="btn search-button-field search-button__button" title="搜索" aria-label="搜索" data-bs-placement="bottom" data-bs-toggle="tooltip">
    <i class="fa-solid fa-magnifying-glass"></i>
    <span class="search-button__default-text">搜索</span>
    <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
   </button>
 `);
 </script></div>
        <div class="sidebar-primary-item"><nav class="bd-links bd-docs-nav" aria-label="Main">
    <div class="bd-toc-item navbar-nav active">
        <p aria-level="2" class="caption" role="heading"><span class="caption-text">快速上手</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../get_started/installation.html">安装</a></li>
<li class="toctree-l1"><a class="reference internal" href="../get_started/pretrained_model.html">模型权重下载</a></li>
<li class="toctree-l1"><a class="reference internal" href="../get_started/quickstart.html">快速开始</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">基础算法模块</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../algorithm/layout_detection.html">布局检测算法</a></li>
<li class="toctree-l1"><a class="reference internal" href="../algorithm/formula_detection.html">公式检测算法</a></li>
<li class="toctree-l1"><a class="reference internal" href="../algorithm/formula_recognition.html">公式识别算法</a></li>
<li class="toctree-l1"><a class="reference internal" href="../algorithm/ocr.html">光学字符识别(OCR)算法</a></li>
<li class="toctree-l1"><a class="reference internal" href="../algorithm/table_recognition.html">表格识别算法</a></li>
<li class="toctree-l1"><a class="reference internal" href="../algorithm/reading_order.html">阅读顺序算法</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">新任务拓展</span></p>
<ul class="current nav bd-sidenav">
<li class="toctree-l1 current active"><a class="current reference internal" href="#">代码实现</a></li>
<li class="toctree-l1"><a class="reference internal" href="doc.html">文档补充</a></li>
<li class="toctree-l1"><a class="reference internal" href="evaluation.html">模型评测</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">支持的模型列表</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../models/supported.html">已支持的模型</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">模型性能评测</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../evaluation/layout_detection.html">布局检测算法评测</a></li>
<li class="toctree-l1"><a class="reference internal" href="../evaluation/formula_detection.html">公式检测算法评测</a></li>
<li class="toctree-l1"><a class="reference internal" href="../evaluation/formula_recognition.html">公式识别算法评测</a></li>
<li class="toctree-l1"><a class="reference internal" href="../evaluation/ocr.html">OCR算法评测</a></li>
<li class="toctree-l1"><a class="reference internal" href="../evaluation/table_recognition.html">表格识别算法评测</a></li>
<li class="toctree-l1"><a class="reference internal" href="../evaluation/reading_order.html">阅读顺序算法评测</a></li>
<li class="toctree-l1"><a class="reference internal" href="../evaluation/pdf_extract.html">PDF内容提取评测【端到端】</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">PDF项目</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../project/pdf_extract.html">文档内容提取项目</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project/doc_translate.html">文档翻译项目</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project/speed_up.html">模型加速项目</a></li>
</ul>

    </div>
</nav></div>
    </div>
  
  
  <div class="sidebar-primary-items__end sidebar-primary__section">
  </div>
  
  <div id="rtd-footer-container"></div>


      </div>
      
      <main id="main-content" class="bd-main" role="main">
        
        

<div class="sbt-scroll-pixel-helper"></div>

          <div class="bd-content">
            <div class="bd-article-container">
              
              <div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
  
    <div class="header-article-items__start">
      
        <div class="header-article-item"><button class="sidebar-toggle primary-toggle btn btn-sm" title="Toggle primary sidebar" data-bs-placement="bottom" data-bs-toggle="tooltip">
  <span class="fa-solid fa-bars"></span>
</button></div>
      
    </div>
  
  
    <div class="header-article-items__end">
      
        <div class="header-article-item">

<div class="article-header-buttons">


<a href="https://github.com/opendatalab/PDF-Extract-Kit" target="_blank"
   class="btn btn-sm btn-source-repository-button"
   title="源码库"
   data-bs-placement="bottom" data-bs-toggle="tooltip"
>
  

<span class="btn__icon-container">
  <i class="fab fa-github"></i>
  </span>

</a>






<div class="dropdown dropdown-download-buttons">
  <button class="btn dropdown-toggle" type="button" data-bs-toggle="dropdown" aria-expanded="false" aria-label="下载此页面">
    <i class="fas fa-download"></i>
  </button>
  <ul class="dropdown-menu">
      
      
      
      <li><a href="../_sources/task_extend/code.rst" target="_blank"
   class="btn btn-sm btn-download-source-button dropdown-item"
   title="下载源文件"
   data-bs-placement="left" data-bs-toggle="tooltip"
>
  

<span class="btn__icon-container">
  <i class="fas fa-file"></i>
  </span>
<span class="btn__text-container">.rst</span>
</a>
</li>
      
      
      
      
      <li>
<button onclick="window.print()"
  class="btn btn-sm btn-download-pdf-button dropdown-item"
  title="列印成 PDF"
  data-bs-placement="left" data-bs-toggle="tooltip"
>
  

<span class="btn__icon-container">
  <i class="fas fa-file-pdf"></i>
  </span>
<span class="btn__text-container">.pdf</span>
</button>
</li>
      
  </ul>
</div>




<button onclick="toggleFullScreen()"
  class="btn btn-sm btn-fullscreen-button"
  title="全屏模式"
  data-bs-placement="bottom" data-bs-toggle="tooltip"
>
  

<span class="btn__icon-container">
  <i class="fas fa-expand"></i>
  </span>

</button>



<script>
document.write(`
  <button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip">
    <i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light"></i>
    <i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark"></i>
    <i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto"></i>
  </button>
`);
</script>


<script>
document.write(`
  <button class="btn btn-sm pst-navbar-icon search-button search-button__button" title="搜索" aria-label="搜索" data-bs-placement="bottom" data-bs-toggle="tooltip">
    <i class="fa-solid fa-magnifying-glass fa-lg"></i>
  </button>
`);
</script>
<button class="sidebar-toggle secondary-toggle btn btn-sm" title="Toggle secondary sidebar" data-bs-placement="bottom" data-bs-toggle="tooltip">
    <span class="fa-solid fa-list"></span>
</button>
</div></div>
      
    </div>
  
</div>
</div>
              
              

<div id="jb-print-docs-body" class="onlyprint">
    <h1>代码实现</h1>
    <!-- Table of contents -->
    <div id="print-main-content">
        <div id="jb-print-toc">
            
            <div>
                <h2> 目录 </h2>
            </div>
            <nav aria-label="Page">
                <ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#id2">任务定义及注册</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#id3">模型定义及注册</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#id4">示例脚本</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#id5">支持类型拓展</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#id6">批处理拓展</a></li>
</ul>
            </nav>
        </div>
    </div>
</div>

              
                
<div id="searchbox"></div>
                <article class="bd-article">
                  
  <section id="id1">
<h1>代码实现<a class="headerlink" href="#id1" title="Link to this heading">#</a></h1>
<p>PDF-Extract-Kit项目的核心代码实现在pdf_extract_kit目录下,该路径下包含下述几个模块:</p>
<ul class="simple">
<li><p>configs: 特定模块的配置文件,如 <code class="docutils literal notranslate"><span class="pre">pdf_extract_kit/configs/unimernet.yaml</span></code> ,如果本身配置简单,建议放在 <code class="docutils literal notranslate"><span class="pre">repo_root/configs</span></code><code class="docutils literal notranslate"><span class="pre">yaml</span></code> 文件中的 <code class="docutils literal notranslate"><span class="pre">model_config</span></code> 里进行定义,方便用户修改。</p></li>
<li><p>dataset: 自定义的 <code class="docutils literal notranslate"><span class="pre">ImageDataset</span></code> 类,用于加载和预处理图像数据。它支持多种输入类型,并且可以对图像进行统一的预处理操作(如调整大小、转换为张量等),以便于后续的模型推理加速。</p></li>
<li><p>evaluation: 模型结果评测模块,支持多种任务类型评测,如 <code class="docutils literal notranslate"><span class="pre">布局检测</span></code><code class="docutils literal notranslate"><span class="pre">公式检测</span></code><code class="docutils literal notranslate"><span class="pre">公式识别</span></code> 等等,方便用户对不同任务、不同模型进行公平对比。</p></li>
<li><p>registry: <code class="docutils literal notranslate"><span class="pre">Registry</span></code> 类是一个通用的注册表类,提供了注册、获取和列出注册项的功能。用户可以使用该类创建不同类型的注册表,例如任务注册表、模型注册表等。</p></li>
<li><p>tasks: 最核心的任务模块,包含了许多不同类型的任务,如 <code class="docutils literal notranslate"><span class="pre">布局检测</span></code><code class="docutils literal notranslate"><span class="pre">公式检测</span></code><code class="docutils literal notranslate"><span class="pre">公式识别</span></code> 等等,用户添加新任务和新模型一般仅需要在这里进行代码添加。</p></li>
</ul>
<div class="admonition note">
<p class="admonition-title">备注</p>
<p>基于上述的模块化设计,用户拓展新模块一般只需要在tasks里实现自己的新任务类及对应模型(更多情况下仅需要实现对应模型,任务已经定义好),然后在registry里注册即可。</p>
</div>
<p>下面我们以添加基于 <code class="docutils literal notranslate"><span class="pre">YOLO``的</span> <span class="pre">``布局检测</span></code> 模型为例,介绍如何添加新任务和新模型.</p>
<section id="id2">
<h2>任务定义及注册<a class="headerlink" href="#id2" title="Link to this heading">#</a></h2>
<p>首先我们在 <code class="docutils literal notranslate"><span class="pre">tasks</span></code> 下添加一个 <code class="docutils literal notranslate"><span class="pre">layout_detection</span></code> 目录,然后在该目录下添加一个 <code class="docutils literal notranslate"><span class="pre">task.py</span></code> 文件用于定义布局检测任务类,具体如下:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">pdf_extract_kit.registry.registry</span> <span class="kn">import</span> <span class="n">TASK_REGISTRY</span>
<span class="kn">from</span> <span class="nn">pdf_extract_kit.tasks.base_task</span> <span class="kn">import</span> <span class="n">BaseTask</span>


<span class="nd">@TASK_REGISTRY</span><span class="o">.</span><span class="n">register</span><span class="p">(</span><span class="s2">&quot;layout_detection&quot;</span><span class="p">)</span>
<span class="k">class</span> <span class="nc">LayoutDetectionTask</span><span class="p">(</span><span class="n">BaseTask</span><span class="p">):</span>
    <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">model</span><span class="p">):</span>
        <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">model</span><span class="p">)</span>

    <span class="k">def</span> <span class="nf">predict_images</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">input_data</span><span class="p">,</span> <span class="n">result_path</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        Predict layouts in images.</span>

<span class="sd">        Args:</span>
<span class="sd">            input_data (str): Path to a single image file or a directory containing image files.</span>
<span class="sd">            result_path (str): Path to save the prediction results.</span>

<span class="sd">        Returns:</span>
<span class="sd">            list: List of prediction results.</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="n">images</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">load_images</span><span class="p">(</span><span class="n">input_data</span><span class="p">)</span>
        <span class="c1"># Perform detection</span>
        <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">images</span><span class="p">,</span> <span class="n">result_path</span><span class="p">)</span>

    <span class="k">def</span> <span class="nf">predict_pdfs</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">input_data</span><span class="p">,</span> <span class="n">result_path</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        Predict layouts in PDF files.</span>

<span class="sd">        Args:</span>
<span class="sd">            input_data (str): Path to a single PDF file or a directory containing PDF files.</span>
<span class="sd">            result_path (str): Path to save the prediction results.</span>

<span class="sd">        Returns:</span>
<span class="sd">            list: List of prediction results.</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="n">pdf_images</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">load_pdf_images</span><span class="p">(</span><span class="n">input_data</span><span class="p">)</span>
        <span class="c1"># Perform detection</span>
        <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="nb">list</span><span class="p">(</span><span class="n">pdf_images</span><span class="o">.</span><span class="n">values</span><span class="p">()),</span> <span class="n">result_path</span><span class="p">,</span> <span class="nb">list</span><span class="p">(</span><span class="n">pdf_images</span><span class="o">.</span><span class="n">keys</span><span class="p">()))</span>
</pre></div>
</div>
<p>可以看到,任务定义包含下面几个要点:</p>
<ul class="simple">
<li><p>使用 <code class="docutils literal notranslate"><span class="pre">&#64;TASK_REGISTRY.register(&quot;layout_detection&quot;)</span></code> 语法直接将布局任务类注册到 <code class="docutils literal notranslate"><span class="pre">TASK_REGISTRY</span></code> 下 ;</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">__init__</span></code> 初始化函数传入 <code class="docutils literal notranslate"><span class="pre">model</span></code> , 具体参考 <code class="docutils literal notranslate"><span class="pre">BaseTask</span></code></p></li>
<li><p>实现推理函数,这里考虑到布局检测通常会处理图像类及PDF文件,所以提供了两个函数 <code class="docutils literal notranslate"><span class="pre">predict_images</span></code><code class="docutils literal notranslate"><span class="pre">predict_pdfs</span></code> ,方便用户灵活选择。</p></li>
</ul>
</section>
<section id="id3">
<h2>模型定义及注册<a class="headerlink" href="#id3" title="Link to this heading">#</a></h2>
<p>接下来我们实现具体模型,在task下面新建models目录,并添加yolo.py用于YOLO模型定义,具体定义如下:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">os</span>
<span class="kn">import</span> <span class="nn">cv2</span>
<span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">from</span> <span class="nn">torch.utils.data</span> <span class="kn">import</span> <span class="n">DataLoader</span><span class="p">,</span> <span class="n">Dataset</span>
<span class="kn">from</span> <span class="nn">ultralytics</span> <span class="kn">import</span> <span class="n">YOLO</span>
<span class="kn">from</span> <span class="nn">pdf_extract_kit.registry</span> <span class="kn">import</span> <span class="n">MODEL_REGISTRY</span>
<span class="kn">from</span> <span class="nn">pdf_extract_kit.utils.visualization</span> <span class="kn">import</span>  <span class="n">visualize_bbox</span>
<span class="kn">from</span> <span class="nn">pdf_extract_kit.dataset.dataset</span> <span class="kn">import</span> <span class="n">ImageDataset</span>
<span class="kn">import</span> <span class="nn">torchvision.transforms</span> <span class="k">as</span> <span class="nn">transforms</span>


<span class="nd">@MODEL_REGISTRY</span><span class="o">.</span><span class="n">register</span><span class="p">(</span><span class="s1">&#39;layout_detection_yolo&#39;</span><span class="p">)</span>
<span class="k">class</span> <span class="nc">LayoutDetectionYOLO</span><span class="p">:</span>
    <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">config</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        Initialize the LayoutDetectionYOLO class.</span>

<span class="sd">        Args:</span>
<span class="sd">            config (dict): Configuration dictionary containing model parameters.</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="c1"># Mapping from class IDs to class names</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">id_to_names</span> <span class="o">=</span> <span class="p">{</span>
            <span class="mi">0</span><span class="p">:</span> <span class="s1">&#39;title&#39;</span><span class="p">,</span>
            <span class="mi">1</span><span class="p">:</span> <span class="s1">&#39;plain text&#39;</span><span class="p">,</span>
            <span class="mi">2</span><span class="p">:</span> <span class="s1">&#39;abandon&#39;</span><span class="p">,</span>
            <span class="mi">3</span><span class="p">:</span> <span class="s1">&#39;figure&#39;</span><span class="p">,</span>
            <span class="mi">4</span><span class="p">:</span> <span class="s1">&#39;figure_caption&#39;</span><span class="p">,</span>
            <span class="mi">5</span><span class="p">:</span> <span class="s1">&#39;table&#39;</span><span class="p">,</span>
            <span class="mi">6</span><span class="p">:</span> <span class="s1">&#39;table_caption&#39;</span><span class="p">,</span>
            <span class="mi">7</span><span class="p">:</span> <span class="s1">&#39;table_footnote&#39;</span><span class="p">,</span>
            <span class="mi">8</span><span class="p">:</span> <span class="s1">&#39;isolate_formula&#39;</span><span class="p">,</span>
            <span class="mi">9</span><span class="p">:</span> <span class="s1">&#39;formula_caption&#39;</span>
        <span class="p">}</span>

        <span class="c1"># Load the YOLO model from the specified path</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">model</span> <span class="o">=</span> <span class="n">YOLO</span><span class="p">(</span><span class="n">config</span><span class="p">[</span><span class="s1">&#39;model_path&#39;</span><span class="p">])</span>

        <span class="c1"># Set model parameters</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">img_size</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;img_size&#39;</span><span class="p">,</span> <span class="mi">1280</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">pdf_dpi</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;pdf_dpi&#39;</span><span class="p">,</span> <span class="mi">200</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">conf_thres</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;conf_thres&#39;</span><span class="p">,</span> <span class="mf">0.25</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">iou_thres</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;iou_thres&#39;</span><span class="p">,</span> <span class="mf">0.45</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">visualize</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;visualize&#39;</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">device</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;device&#39;</span><span class="p">,</span> <span class="s1">&#39;cuda&#39;</span> <span class="k">if</span> <span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">is_available</span><span class="p">()</span> <span class="k">else</span> <span class="s1">&#39;cpu&#39;</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">batch_size</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;batch_size&#39;</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>

    <span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">images</span><span class="p">,</span> <span class="n">result_path</span><span class="p">,</span> <span class="n">image_ids</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w">        </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        Predict layouts in images.</span>

<span class="sd">        Args:</span>
<span class="sd">            images (list): List of images to be predicted.</span>
<span class="sd">            result_path (str): Path to save the prediction results.</span>
<span class="sd">            image_ids (list, optional): List of image IDs corresponding to the images.</span>

<span class="sd">        Returns:</span>
<span class="sd">            list: List of prediction results.</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="n">results</span> <span class="o">=</span> <span class="p">[]</span>
        <span class="k">for</span> <span class="n">idx</span><span class="p">,</span> <span class="n">image</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">images</span><span class="p">):</span>
            <span class="n">result</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="n">imgsz</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">img_size</span><span class="p">,</span> <span class="n">conf</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">conf_thres</span><span class="p">,</span> <span class="n">iou</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">iou_thres</span><span class="p">,</span> <span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
            <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">visualize</span><span class="p">:</span>
                <span class="k">if</span> <span class="ow">not</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">exists</span><span class="p">(</span><span class="n">result_path</span><span class="p">):</span>
                    <span class="n">os</span><span class="o">.</span><span class="n">makedirs</span><span class="p">(</span><span class="n">result_path</span><span class="p">)</span>
                <span class="n">boxes</span> <span class="o">=</span> <span class="n">result</span><span class="o">.</span><span class="vm">__dict__</span><span class="p">[</span><span class="s1">&#39;boxes&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">xyxy</span>
                <span class="n">classes</span> <span class="o">=</span> <span class="n">result</span><span class="o">.</span><span class="vm">__dict__</span><span class="p">[</span><span class="s1">&#39;boxes&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">cls</span>
                <span class="n">vis_result</span> <span class="o">=</span> <span class="n">visualize_bbox</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="n">boxes</span><span class="p">,</span> <span class="n">classes</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">id_to_names</span><span class="p">)</span>

                <span class="c1"># Determine the base name of the image</span>
                <span class="k">if</span> <span class="n">image_ids</span><span class="p">:</span>
                    <span class="n">base_name</span> <span class="o">=</span> <span class="n">image_ids</span><span class="p">[</span><span class="n">idx</span><span class="p">]</span>
                <span class="k">else</span><span class="p">:</span>
                    <span class="n">base_name</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">basename</span><span class="p">(</span><span class="n">image</span><span class="p">)</span>

                <span class="n">result_name</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">base_name</span><span class="si">}</span><span class="s2">_MFD.png&quot;</span>

                <span class="c1"># Save the visualized result</span>
                <span class="n">cv2</span><span class="o">.</span><span class="n">imwrite</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">result_path</span><span class="p">,</span> <span class="n">result_name</span><span class="p">),</span> <span class="n">vis_result</span><span class="p">)</span>
            <span class="n">results</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">result</span><span class="p">)</span>
        <span class="k">return</span> <span class="n">results</span>
</pre></div>
</div>
<p>可以看到,模型定义包含下面几个要点:</p>
<ul class="simple">
<li><p>使用 <code class="docutils literal notranslate"><span class="pre">&#64;MODEL_REGISTRY.register('layout_detection_yolo')</span></code> 语法直接将yolo布局模型注册到 <code class="docutils literal notranslate"><span class="pre">MODEL_REGISTRY</span></code> 下;</p></li>
<li><dl class="simple">
<dt>初始化函数需要实现:</dt><dd><ul>
<li><p>id_to_names的类别映射,用于可视化展示</p></li>
<li><p>模型参数配置</p></li>
<li><p>模型初始化</p></li>
</ul>
</dd>
</dl>
</li>
<li><p>模型推理函数需要实现多种类型的模型推理:这里支持图像列表和PIL.Image类,可以方便用户直接基于图像路径或者图像流进行推理。</p></li>
</ul>
<p>实现上述类定义后,将 <code class="docutils literal notranslate"><span class="pre">LayoutDetectionYOLO</span></code> 添加到 <code class="docutils literal notranslate"><span class="pre">layout_detection</span></code> 任务下 <code class="docutils literal notranslate"><span class="pre">__init__.py</span></code><code class="docutils literal notranslate"><span class="pre">__all__</span></code> 中即可。</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">pdf_extract_kit.tasks.layout_detection.models.yolo</span> <span class="kn">import</span> <span class="n">LayoutDetectionYOLO</span>
<span class="kn">from</span> <span class="nn">pdf_extract_kit.registry.registry</span> <span class="kn">import</span> <span class="n">MODEL_REGISTRY</span>


<span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span>
    <span class="s2">&quot;LayoutDetectionYOLO&quot;</span><span class="p">,</span>
<span class="p">]</span>
</pre></div>
</div>
<div class="admonition note">
<p class="admonition-title">备注</p>
<p>对于同一个任务,我们支持多种模型,用户具体选择哪个可以根据评测结果进行选择,结合模型 <code class="docutils literal notranslate"><span class="pre">精度</span></code><code class="docutils literal notranslate"><span class="pre">速度</span></code><code class="docutils literal notranslate"><span class="pre">场景适配程度</span></code> 进行选择。</p>
</div>
<p>实现了任务和模型后,可以在 repo_root/scripts下添加脚本程序 <code class="docutils literal notranslate"><span class="pre">layout_detection.py</span></code></p>
</section>
<section id="id4">
<h2>示例脚本<a class="headerlink" href="#id4" title="Link to this heading">#</a></h2>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">os</span>
<span class="kn">import</span> <span class="nn">sys</span>
<span class="kn">import</span> <span class="nn">os.path</span> <span class="k">as</span> <span class="nn">osp</span>
<span class="kn">import</span> <span class="nn">argparse</span>

<span class="n">sys</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">osp</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">dirname</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">abspath</span><span class="p">(</span><span class="vm">__file__</span><span class="p">)),</span> <span class="s1">&#39;..&#39;</span><span class="p">))</span>
<span class="kn">from</span> <span class="nn">pdf_extract_kit.utils.config_loader</span> <span class="kn">import</span> <span class="n">load_config</span><span class="p">,</span> <span class="n">initialize_tasks_and_models</span>
<span class="kn">import</span> <span class="nn">pdf_extract_kit.tasks</span>  <span class="c1"># 确保所有任务模块被导入</span>

<span class="n">TASK_NAME</span> <span class="o">=</span> <span class="s1">&#39;layout_detection&#39;</span>


<span class="k">def</span> <span class="nf">parse_args</span><span class="p">():</span>
    <span class="n">parser</span> <span class="o">=</span> <span class="n">argparse</span><span class="o">.</span><span class="n">ArgumentParser</span><span class="p">(</span><span class="n">description</span><span class="o">=</span><span class="s2">&quot;Run a task with a given configuration file.&quot;</span><span class="p">)</span>
    <span class="n">parser</span><span class="o">.</span><span class="n">add_argument</span><span class="p">(</span><span class="s1">&#39;--config&#39;</span><span class="p">,</span> <span class="nb">type</span><span class="o">=</span><span class="nb">str</span><span class="p">,</span> <span class="n">required</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">help</span><span class="o">=</span><span class="s1">&#39;Path to the configuration file.&#39;</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">parser</span><span class="o">.</span><span class="n">parse_args</span><span class="p">()</span>

<span class="k">def</span> <span class="nf">main</span><span class="p">(</span><span class="n">config_path</span><span class="p">):</span>
    <span class="n">config</span> <span class="o">=</span> <span class="n">load_config</span><span class="p">(</span><span class="n">config_path</span><span class="p">)</span>
    <span class="n">task_instances</span> <span class="o">=</span> <span class="n">initialize_tasks_and_models</span><span class="p">(</span><span class="n">config</span><span class="p">)</span>

    <span class="c1"># get input and output path from config</span>
    <span class="n">input_data</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;inputs&#39;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
    <span class="n">result_path</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;outputs&#39;</span><span class="p">,</span> <span class="s1">&#39;outputs&#39;</span><span class="o">+</span><span class="s1">&#39;/&#39;</span><span class="o">+</span><span class="n">TASK_NAME</span><span class="p">)</span>

    <span class="c1"># layout_detection_task</span>
    <span class="n">model_layout_detection</span> <span class="o">=</span> <span class="n">task_instances</span><span class="p">[</span><span class="n">TASK_NAME</span><span class="p">]</span>

    <span class="c1"># for image detection</span>
    <span class="n">detection_results</span> <span class="o">=</span> <span class="n">model_layout_detection</span><span class="o">.</span><span class="n">predict_images</span><span class="p">(</span><span class="n">input_data</span><span class="p">,</span> <span class="n">result_path</span><span class="p">)</span>

    <span class="c1"># for pdf detection</span>
    <span class="c1"># detection_results = model_layout_detection.predict_pdfs(input_data, result_path)</span>

    <span class="c1"># print(detection_results)</span>
    <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s1">&#39;The predicted results can be found at </span><span class="si">{</span><span class="n">result_path</span><span class="si">}</span><span class="s1">&#39;</span><span class="p">)</span>


<span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span class="p">:</span>
    <span class="n">args</span> <span class="o">=</span> <span class="n">parse_args</span><span class="p">()</span>
    <span class="n">main</span><span class="p">(</span><span class="n">args</span><span class="o">.</span><span class="n">config</span><span class="p">)</span>
</pre></div>
</div>
</section>
<section id="id5">
<h2>支持类型拓展<a class="headerlink" href="#id5" title="Link to this heading">#</a></h2>
</section>
<section id="id6">
<h2>批处理拓展<a class="headerlink" href="#id6" title="Link to this heading">#</a></h2>
</section>
</section>


                </article>
              

              
              
              
              
                <footer class="prev-next-footer d-print-none">
                  
<div class="prev-next-area">
    <a class="left-prev"
       href="../algorithm/reading_order.html"
       title="previous page">
      <i class="fa-solid fa-angle-left"></i>
      <div class="prev-next-info">
        <p class="prev-next-subtitle">上一页</p>
        <p class="prev-next-title">阅读顺序算法</p>
      </div>
    </a>
    <a class="right-next"
       href="doc.html"
       title="next page">
      <div class="prev-next-info">
        <p class="prev-next-subtitle">下一页</p>
        <p class="prev-next-title">文档补充</p>
      </div>
      <i class="fa-solid fa-angle-right"></i>
    </a>
</div>
                </footer>
              
            </div>
            
            
              
                <div class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner">


  <div class="sidebar-secondary-item">
  <div class="page-toc tocsection onthispage">
    <i class="fa-solid fa-list"></i> 目录
  </div>
  <nav class="bd-toc-nav page-toc">
    <ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#id2">任务定义及注册</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#id3">模型定义及注册</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#id4">示例脚本</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#id5">支持类型拓展</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#id6">批处理拓展</a></li>
</ul>
  </nav></div>

</div></div>
              
            
          </div>
          <footer class="bd-footer-content">
            
<div class="bd-footer-content__inner container">
  
  <div class="footer-item">
    
<p class="component-author">
作者: PDF-Extract-Kit Contributors
</p>

  </div>
  
  <div class="footer-item">
    

  <p class="copyright">
    
      © Copyright 2024, OpenDataLab.
      <br/>
    
  </p>

  </div>
  
  <div class="footer-item">
    
  </div>
  
  <div class="footer-item">
    
  </div>
  
</div>
          </footer>
        

      </main>
    </div>
  </div>
  
  <!-- Scripts loaded after <body> so the DOM is not blocked -->
  <script src="../_static/scripts/bootstrap.js?digest=dfe6caa3a7d634c4db9b"></script>
<script src="../_static/scripts/pydata-sphinx-theme.js?digest=dfe6caa3a7d634c4db9b"></script>

  <footer class="bd-footer">
  </footer>
  </body>
</html>