| .. _algorithm_layout_detection: | |
| ================= | |
| Layout Detection Algorithm | |
| ================= | |
| Introduction | |
| ================= | |
| Layout detection is a fundamental task in document content extraction, aiming to locate different types of regions on a page, such as images, tables, text, and headings, to facilitate high-quality content extraction. For text and heading regions, OCR models can be used for text recognition, while table regions can be converted using table recognition models. | |
| Model Usage | |
| ================= | |
| Layout detection supports following models: | |
| .. raw:: html | |
| <style type="text/css"> | |
| .tg {border-collapse:collapse;border-color:#9ABAD9;border-spacing:0;} | |
| .tg td{background-color:#EBF5FF;border-color:#9ABAD9;border-style:solid;border-width:1px;color:#444; | |
| font-family:Arial, sans-serif;font-size:14px;overflow:hidden;padding:10px 5px;word-break:normal;} | |
| .tg th{background-color:#409cff;border-color:#9ABAD9;border-style:solid;border-width:1px;color:#fff; | |
| font-family:Arial, sans-serif;font-size:14px;font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;} | |
| .tg .tg-f8tz{background-color:#409cff;border-color:inherit;text-align:left;vertical-align:top} | |
| .tg .tg-0lax{text-align:left;vertical-align:top} | |
| .tg .tg-0pky{border-color:inherit;text-align:left;vertical-align:top} | |
| </style> | |
| <table class="tg"><thead> | |
| <tr> | |
| <th class="tg-0lax">Model</th> | |
| <th class="tg-f8tz">Description</th> | |
| <th class="tg-f8tz">Characteristics</th> | |
| <th class="tg-f8tz">Model weight</th> | |
| <th class="tg-f8tz">Config file</th> | |
| </tr></thead> | |
| <tbody> | |
| <tr> | |
| <td class="tg-0lax">DocLayout-YOLO</td> | |
| <td class="tg-0pky">Improved based on YOLO-v10:<br>1. Generate diverse pre-training data,enhance generalization ability across multiple document types<br>2. Model architecture improvement, improve perception ability on scale-varing instances<br>Details in <a href="https://github.com/opendatalab/DocLayout-YOLO" target="_blank" rel="noopener noreferrer">DocLayout-YOLO</a></td> | |
| <td class="tg-0pky">Speed:Fast, Accuracy:High</td> | |
| <td class="tg-0pky"><a href="https://huggingface.co/opendatalab/PDF-Extract-Kit-1.0/blob/main/models/Layout/YOLO/doclayout_yolo_ft.pt" target="_blank" rel="noopener noreferrer">doclayout_yolo_ft.pt</a></td> | |
| <td class="tg-0pky">layout_detection.yaml</td> | |
| </tr> | |
| <tr> | |
| <td class="tg-0lax">YOLO-v10</td> | |
| <td class="tg-0pky">Base YOLO-v10 model</td> | |
| <td class="tg-0pky">Speed:Fast, Accuracy:Moderate</td> | |
| <td class="tg-0pky"><a href="https://huggingface.co/opendatalab/PDF-Extract-Kit-1.0/blob/main/models/Layout/YOLO/yolov10l_ft.pt" target="_blank" rel="noopener noreferrer">yolov10l_ft.pt</a></td> | |
| <td class="tg-0pky">layout_detection_yolo.yaml</td> | |
| </tr> | |
| <tr> | |
| <td class="tg-0lax">LayoutLMv3</td> | |
| <td class="tg-0pky">Base LayoutLMv3 model</td> | |
| <td class="tg-0pky">Speed:Slow, Accuracy:High</td> | |
| <td class="tg-0pky"><a href="https://huggingface.co/opendatalab/PDF-Extract-Kit-1.0/tree/main/models/Layout/LayoutLMv3" target="_blank" rel="noopener noreferrer">layoutlmv3_ft</a></td> | |
| <td class="tg-0pky">layout_detection_layoutlmv3.yaml</td> | |
| </tr> | |
| </tbody></table> | |
| Once enciroment is setup, you can perform layout detection by executing ``scripts/layout_detection.py`` directly. | |
| **Run demo** | |
| .. code:: shell | |
| $ python scripts/layout_detection.py --config configs/layout_detection.yaml | |
| Model Configuration | |
| ----------------- | |
| **1. DocLayout-YOLO / YOLO-v10** | |
| .. code:: yaml | |
| inputs: assets/demo/layout_detection | |
| outputs: outputs/layout_detection | |
| tasks: | |
| layout_detection: | |
| model: layout_detection_yolo | |
| model_config: | |
| img_size: 1024 | |
| conf_thres: 0.25 | |
| iou_thres: 0.45 | |
| model_path: path/to/doclayout_yolo_model | |
| visualize: True | |
| - inputs/outputs: Define the input file path and the directory for visualization output. | |
| - tasks: Define the task type, currently only a layout detection task is included. | |
| - model: Specify the specific model type, e.g., layout_detection_yolo. | |
| - model_config: Define the model configuration. | |
| - img_size: Define the image long edge size; the short edge will be scaled proportionally based on the long edge, with the default long edge being 1024. | |
| - conf_thres: Define the confidence threshold, detecting only targets above this threshold. | |
| - iou_thres: Define the IoU threshold, removing targets with an overlap greater than this threshold. | |
| - model_path: Path to the model weights. | |
| - visualize: Whether to visualize the model results; visualized results will be saved in the outputs directory. | |
| **2. layoutlmv3** | |
| .. note:: | |
| LayoutLMv3 cannot run directly by default. Please follow the steps below to modify the configuration: | |
| 1. **Detectron2 Environment Setup** | |
| .. code-block:: bash | |
| # For Linux | |
| pip install https://wheels-1251341229.cos.ap-shanghai.myqcloud.com/assets/whl/detectron2/detectron2-0.6-cp310-cp310-linux_x86_64.whl | |
| # For macOS | |
| pip install https://wheels-1251341229.cos.ap-shanghai.myqcloud.com/assets/whl/detectron2/detectron2-0.6-cp310-cp310-macosx_10_9_universal2.whl | |
| # For Windows | |
| pip install https://wheels-1251341229.cos.ap-shanghai.myqcloud.com/assets/whl/detectron2/detectron2-0.6-cp310-cp310-win_amd64.whl | |
| 2. **Enable LayoutLMv3 Registration Code** | |
| Uncomment the lines at the following links: | |
| - `line 2 <https://github.com/opendatalab/PDF-Extract-Kit/blob/main/pdf_extract_kit/tasks/layout_detection/__init__.py#L2>`_ | |
| - `line 8 <https://github.com/opendatalab/PDF-Extract-Kit/blob/main/pdf_extract_kit/tasks/layout_detection/__init__.py#L8>`_ | |
| .. code-block:: python | |
| from pdf_extract_kit.tasks.layout_detection.models.yolo import LayoutDetectionYOLO | |
| from pdf_extract_kit.tasks.layout_detection.models.layoutlmv3 import LayoutDetectionLayoutlmv3 | |
| from pdf_extract_kit.registry.registry import MODEL_REGISTRY | |
| __all__ = [ | |
| "LayoutDetectionYOLO", | |
| "LayoutDetectionLayoutlmv3", | |
| ] | |
| .. code:: yaml | |
| inputs: assets/demo/layout_detection | |
| outputs: outputs/layout_detection | |
| tasks: | |
| layout_detection: | |
| model: layout_detection_layoutlmv3 | |
| model_config: | |
| model_path: path/to/layoutlmv3_model | |
| - inputs/outputs: Define the input file path and the directory for visualization output. | |
| - tasks: Define the task type, currently only a layout detection task is included. | |
| - model: Specify the specific model type, e.g., layout_detection_layoutlmv3. | |
| - model_config: Define the model configuration. | |
| - model_path: Path to the model weights. | |
| Diverse Input Support | |
| ----------------- | |
| The layout detection script in PDF-Extract-Kit supports input formats such as a ``single image``, a ``directory containing only image files``, a ``single PDF file``, and a ``directory containing only PDF files``. | |
| .. note:: | |
| Modify the path to inputs in configs/layout_detection.yaml according to your actual data format: | |
| - Single image: path/to/image | |
| - Image directory: path/to/images | |
| - Single PDF file: path/to/pdf | |
| - PDF directory: path/to/pdfs | |
| .. note:: | |
| When using PDF as input, you need to change ``predict_images`` to ``predict_pdfs`` in ``layout_detection.py``. | |
| .. code:: python | |
| # for image detection | |
| detection_results = model_layout_detection.predict_images(input_data, result_path) | |
| Change to: | |
| .. code:: python | |
| # for pdf detection | |
| detection_results = model_layout_detection.predict_pdfs(input_data, result_path) | |
| Viewing Visualization Results | |
| ----------------- | |
| When ``visualize`` is set to ``True`` in the config file, the visualization results will be saved in the ``outputs`` directory. | |
| .. note:: | |
| Visualization is helpful for analyzing model results, but for large-scale tasks, it is recommended to turn off visualization (set ``visualize`` to ``False`` ) to reduce memory and disk usage. |