Spaces:
Sleeping
Sleeping
| # -*- coding: utf-8 -*- | |
| # Copyright (c) XiMing Xing. All rights reserved. | |
| # Author: XiMing Xing | |
| # Description: | |
| from enum import Enum | |
| import torch | |
| import torch.distributed as dist | |
| class Summary(Enum): | |
| NONE = 0 | |
| AVERAGE = 1 | |
| SUM = 2 | |
| COUNT = 3 | |
| class AverageMeter(object): | |
| """Computes and stores the average and current value""" | |
| def __init__(self, name, fmt=':f', summary_type=Summary.AVERAGE): | |
| self.name = name | |
| self.fmt = fmt | |
| self.summary_type = summary_type | |
| self.reset() | |
| def reset(self): | |
| self.val = 0 | |
| self.avg = 0 | |
| self.sum = 0 | |
| self.count = 0 | |
| def update(self, val, n=1): | |
| self.val = val | |
| self.sum += val * n | |
| self.count += n | |
| self.avg = self.sum / self.count | |
| def all_reduce(self): | |
| if torch.cuda.is_available(): | |
| device = torch.device("cuda") | |
| elif torch.backends.mps.is_available(): | |
| device = torch.device("mps") | |
| else: | |
| device = torch.device("cpu") | |
| total = torch.tensor([self.sum, self.count], dtype=torch.float32, device=device) | |
| dist.all_reduce(total, dist.ReduceOp.SUM, async_op=False) | |
| self.sum, self.count = total.tolist() | |
| self.avg = self.sum / self.count | |
| def __str__(self): | |
| fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' | |
| return fmtstr.format(**self.__dict__) | |
| def summary(self): | |
| fmtstr = '' | |
| if self.summary_type is Summary.NONE: | |
| fmtstr = '' | |
| elif self.summary_type is Summary.AVERAGE: | |
| fmtstr = '{name} {avg:.3f}' | |
| elif self.summary_type is Summary.SUM: | |
| fmtstr = '{name} {sum:.3f}' | |
| elif self.summary_type is Summary.COUNT: | |
| fmtstr = '{name} {count:.3f}' | |
| else: | |
| raise ValueError('invalid summary type %r' % self.summary_type) | |
| return fmtstr.format(**self.__dict__) | |