Spaces:
Sleeping
Sleeping
| # -*- coding: utf-8 -*- | |
| # Copyright (c) XiMing Xing. All rights reserved. | |
| # Author: XiMing Xing | |
| # Description: | |
| import PIL | |
| from PIL import Image | |
| from typing import Callable, List, Optional, Union, Tuple, AnyStr | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| from torch.cuda.amp import custom_bwd, custom_fwd | |
| from torchvision import transforms | |
| from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput | |
| from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipeline | |
| from pytorch_svgrender.token2attn.attn_control import AttentionStore | |
| from pytorch_svgrender.token2attn.ptp_utils import text_under_image, view_images | |
| class Token2AttnMixinASDSSDXLPipeline(StableDiffusionXLPipeline): | |
| r""" | |
| Pipeline for text-to-image generation using Stable Diffusion XL. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| text_encoder ([`CLIPTextModel`]): | |
| Frozen text-encoder. Stable Diffusion uses the text portion of | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
| the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
| tokenizer (`CLIPTokenizer`): | |
| Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
| unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
| [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
| safety_checker ([`StableDiffusionSafetyChecker`]): | |
| Classification module that estimates whether generated images could be considered offensive or harmful. | |
| Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. | |
| feature_extractor ([`CLIPFeatureExtractor`]): | |
| Model that extracts features from generated images to be used as inputs for the `safety_checker`. | |
| """ | |
| _optional_components = ["safety_checker", "feature_extractor"] | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]], | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| controller: AttentionStore = None, # feed attention_store as control of ptp | |
| num_inference_steps: int = 50, | |
| denoising_end: Optional[float] = None, | |
| guidance_scale: float = 5.0, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: Optional[int] = 1, | |
| original_size: Optional[Tuple[int, int]] = None, | |
| crops_coords_top_left: Tuple[int, int] = (0, 0), | |
| target_size: Optional[Tuple[int, int]] = None, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
| used in both text-encoders | |
| height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| denoising_end (`float`, *optional*): | |
| When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be | |
| completed before it is intentionally prematurely terminated. As a result, the returned sample will | |
| still retain a substantial amount of noise as determined by the discrete timesteps selected by the | |
| scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a | |
| "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image | |
| Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output) | |
| guidance_scale (`float`, *optional*, defaults to 5.0): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| negative_prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | |
| `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
| [`schedulers.DDIMScheduler`], will be ignored for others. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead | |
| of a plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that will be called every `callback_steps` steps during inference. The function will be | |
| called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function will be called. If not specified, the callback will be | |
| called at every step. | |
| original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
| If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. | |
| `original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as | |
| explained in section 2.2 of | |
| [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
| crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): | |
| `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position | |
| `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting | |
| `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of | |
| [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
| target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
| For most cases, `target_size` should be set to the desired height and width of the generated image. If | |
| not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in | |
| section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
| Examples: | |
| Returns: | |
| [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`: | |
| [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a | |
| `tuple`. When returning a tuple, the first element is a list with the generated images. | |
| """ | |
| self.register_attention_control(controller) # add attention controller | |
| # 0. Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| original_size = original_size or (height, width) | |
| target_size = target_size or (height, width) | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs(prompt, prompt_2, height, width, callback_steps) | |
| # 2. Define call parameters | |
| batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| ( | |
| text_embeddings, | |
| negative_text_embeddings, | |
| pooled_text_embeddings, | |
| negative_pooled_text_embeddings, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| negative_prompt=negative_prompt, | |
| negative_prompt_2=negative_prompt_2, | |
| ) | |
| # 4. Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # 5. Prepare latent variables | |
| try: | |
| num_channels_latents = self.unet.config.in_channels | |
| except Exception or Warning: | |
| num_channels_latents = self.unet.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| text_embeddings.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 6. Prepare extra step kwargs. inherit TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 7. Prepare added time ids & embeddings | |
| add_text_embeddings = pooled_text_embeddings | |
| add_time_ids = self._get_add_time_ids( | |
| original_size, crops_coords_top_left, target_size, dtype=text_embeddings.dtype | |
| ) | |
| if do_classifier_free_guidance: | |
| text_embeddings = torch.cat([negative_text_embeddings, text_embeddings], dim=0) | |
| add_text_embeddings = torch.cat([negative_pooled_text_embeddings, add_text_embeddings], dim=0) | |
| add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0) | |
| text_embeddings = text_embeddings.to(device) | |
| add_text_embeddings = add_text_embeddings.to(device) | |
| add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) | |
| # 8. Denoising loop | |
| # 8.1 Apply denoising_end | |
| if denoising_end is not None and type(denoising_end) == float and denoising_end > 0 and denoising_end < 1: | |
| discrete_timestep_cutoff = int( | |
| round( | |
| self.scheduler.config.num_train_timesteps | |
| - (denoising_end * self.scheduler.config.num_train_timesteps) | |
| ) | |
| ) | |
| num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) | |
| timesteps = timesteps[:num_inference_steps] | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # predict the noise residual | |
| added_cond_kwargs = {"text_embeds": add_text_embeddings, "time_ids": add_time_ids} | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=text_embeddings, | |
| added_cond_kwargs=added_cond_kwargs | |
| ).sample | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
| # step callback | |
| latents = controller.step_callback(latents) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, t, latents) | |
| # 9. Post-processing | |
| # The decode_latents method is deprecated and has been removed in sdxl | |
| # image = self.decode_latents(latents) | |
| # make sure the VAE is in float32 mode, as it overflows in float16 | |
| if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: | |
| self.upcast_vae() | |
| latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) | |
| if not output_type == "latent": | |
| image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
| else: | |
| image = latents | |
| return StableDiffusionXLPipelineOutput(images=image) | |
| # apply watermark if available | |
| if self.watermark is not None: | |
| image = self.watermark.apply_watermark(image) | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| if not return_dict: | |
| return (image,) | |
| return StableDiffusionXLPipelineOutput(images=image) | |
| def encode2latents(self, | |
| image, | |
| batch_size, | |
| num_images_per_prompt, | |
| dtype, | |
| device, | |
| generator=None): | |
| if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
| raise ValueError( | |
| f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
| ) | |
| # Offload text encoder if `enable_model_cpu_offload` was enabled | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.text_encoder_2.to("cpu") | |
| torch.cuda.empty_cache() | |
| image = image.to(device=device, dtype=dtype) | |
| batch_size = batch_size * num_images_per_prompt | |
| if image.shape[1] == 4: | |
| init_latents = image | |
| else: | |
| # make sure the VAE is in float32 mode, as it overflows in float16 | |
| if self.vae.config.force_upcast: | |
| image = image.float() | |
| self.vae.to(dtype=torch.float32) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| elif isinstance(generator, list): | |
| init_latents = [ | |
| self.vae.encode(image[i: i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) | |
| ] | |
| init_latents = torch.cat(init_latents, dim=0) | |
| else: | |
| init_latents = self.vae.encode(image).latent_dist.sample(generator) | |
| if self.vae.config.force_upcast: | |
| self.vae.to(dtype) | |
| init_latents = init_latents.to(dtype) | |
| init_latents = self.vae.config.scaling_factor * init_latents | |
| if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: | |
| # expand init_latents for batch_size | |
| additional_image_per_prompt = batch_size // init_latents.shape[0] | |
| init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) | |
| elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: | |
| raise ValueError( | |
| f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." | |
| ) | |
| else: | |
| init_latents = torch.cat([init_latents], dim=0) | |
| latents = init_latents | |
| return latents | |
| def S_aug(sketch: torch.Tensor, | |
| im_res: int = 1024, | |
| augments: str = "affine_contrast"): | |
| # init augmentations | |
| augment_list = [] | |
| if "affine" in augments: | |
| augment_list.append( | |
| transforms.RandomPerspective(fill=0, p=1.0, distortion_scale=0.5) | |
| ) | |
| augment_list.append( | |
| transforms.RandomResizedCrop(im_res, scale=(0.8, 0.8), ratio=(1.0, 1.0)) | |
| ) | |
| if "contrast" in augments: | |
| # 2: increases the sharpness by a factor of 2. | |
| augment_list.append( | |
| transforms.RandomAdjustSharpness(sharpness_factor=2) | |
| ) | |
| augment_compose = transforms.Compose(augment_list) | |
| return augment_compose(sketch) | |
| def score_distillation_sampling(self, | |
| pred_rgb: torch.Tensor, | |
| crop_size: int, | |
| augments: str, | |
| prompt: Union[List, str], | |
| prompt_2: Optional[Union[List, str]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| negative_prompt: Union[List, str] = None, | |
| negative_prompt_2: Optional[Union[List, str]] = None, | |
| guidance_scale: float = 100, | |
| as_latent: bool = False, | |
| grad_scale: float = 1, | |
| t_range: Union[List[float], Tuple[float]] = (0.05, 0.95), | |
| original_size: Optional[Tuple[int, int]] = None, | |
| crops_coords_top_left: Tuple[int, int] = (0, 0), | |
| target_size: Optional[Tuple[int, int]] = None): | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| original_size = original_size or (height, width) | |
| target_size = target_size or (height, width) | |
| batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
| num_train_timesteps = self.scheduler.config.num_train_timesteps | |
| min_step = int(num_train_timesteps * t_range[0]) | |
| max_step = int(num_train_timesteps * t_range[1]) | |
| alphas = self.scheduler.alphas_cumprod.to(self.device) # for convenience | |
| num_images_per_prompt = 1 # the number of images to generate per prompt | |
| # Encode input prompt | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| ( | |
| text_embeddings, | |
| negative_text_embeddings, | |
| pooled_text_embeddings, | |
| negative_pooled_text_embeddings, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| device=self.device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| negative_prompt=negative_prompt, | |
| negative_prompt_2=negative_prompt_2, | |
| ) | |
| # sketch augmentation | |
| pred_rgb_a = self.S_aug(pred_rgb, crop_size, augments) | |
| # interp to 512x512 to be fed into vae. | |
| if as_latent: | |
| latents = F.interpolate(pred_rgb_a, (128, 128), mode='bilinear', align_corners=False) * 2 - 1 | |
| else: | |
| # encode image into latents via vae, requires grad! | |
| latents = self.encode2latents( | |
| pred_rgb_a, | |
| batch_size, | |
| num_images_per_prompt, | |
| text_embeddings.dtype, | |
| self.device | |
| ) | |
| # timestep ~ U(0.05, 0.95) to avoid very high/low noise level | |
| t = torch.randint(min_step, max_step + 1, [1], dtype=torch.long, device=self.device) | |
| # 7. Prepare added time ids & embeddings | |
| add_text_embeddings = pooled_text_embeddings | |
| add_time_ids = self._get_add_time_ids( | |
| original_size, crops_coords_top_left, target_size, dtype=text_embeddings.dtype | |
| ) | |
| if do_classifier_free_guidance: | |
| text_embeddings = torch.cat([negative_text_embeddings, text_embeddings], dim=0) | |
| add_text_embeddings = torch.cat([negative_pooled_text_embeddings, add_text_embeddings], dim=0) | |
| add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0) | |
| text_embeddings = text_embeddings.to(self.device) | |
| add_text_embeddings = add_text_embeddings.to(self.device) | |
| add_time_ids = add_time_ids.to(self.device).repeat(batch_size * num_images_per_prompt, 1) | |
| # predict the noise residual with unet, stop gradient | |
| with torch.no_grad(): | |
| # add noise | |
| noise = torch.randn_like(latents) | |
| latents_noisy = self.scheduler.add_noise(latents, noise, t) | |
| # pred noise | |
| latent_model_input = torch.cat([latents_noisy] * 2) if do_classifier_free_guidance else latents_noisy | |
| # predict the noise residual | |
| added_cond_kwargs = {"text_embeds": add_text_embeddings, "time_ids": add_time_ids} | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=text_embeddings, | |
| added_cond_kwargs=added_cond_kwargs | |
| ).sample | |
| # perform guidance (high scale from paper!) | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_pos = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_pos - noise_pred_uncond) | |
| # w(t), sigma_t^2 | |
| w = (1 - alphas[t]) | |
| grad = grad_scale * w * (noise_pred - noise) | |
| grad = torch.nan_to_num(grad) | |
| # since we omitted an item in grad, we need to use the custom function to specify the gradient | |
| loss = SpecifyGradient.apply(latents, grad) | |
| return loss, grad.mean() | |
| def register_attention_control(self, controller): | |
| attn_procs = {} | |
| cross_att_count = 0 | |
| for name in self.unet.attn_processors.keys(): | |
| cross_attention_dim = None if name.endswith("attn1.processor") else self.unet.config.cross_attention_dim | |
| if name.startswith("mid_block"): | |
| hidden_size = self.unet.config.block_out_channels[-1] | |
| place_in_unet = "mid" | |
| elif name.startswith("up_blocks"): | |
| block_id = int(name[len("up_blocks.")]) | |
| hidden_size = list(reversed(self.unet.config.block_out_channels))[block_id] | |
| place_in_unet = "up" | |
| elif name.startswith("down_blocks"): | |
| block_id = int(name[len("down_blocks.")]) | |
| hidden_size = self.unet.config.block_out_channels[block_id] | |
| place_in_unet = "down" | |
| else: | |
| continue | |
| cross_att_count += 1 | |
| attn_procs[name] = P2PCrossAttnProcessor( | |
| controller=controller, place_in_unet=place_in_unet | |
| ) | |
| self.unet.set_attn_processor(attn_procs) | |
| controller.num_att_layers = cross_att_count | |
| def aggregate_attention(prompts, | |
| attention_store: AttentionStore, | |
| res: int, | |
| from_where: List[str], | |
| is_cross: bool, | |
| select: int): | |
| if isinstance(prompts, str): | |
| prompts = [prompts] | |
| assert isinstance(prompts, list) | |
| out = [] | |
| attention_maps = attention_store.get_average_attention() | |
| num_pixels = res ** 2 | |
| for location in from_where: | |
| for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]: | |
| if item.shape[1] == num_pixels: | |
| cross_maps = item.reshape(len(prompts), -1, res, res, item.shape[-1])[select] | |
| out.append(cross_maps) | |
| out = torch.cat(out, dim=0) | |
| out = out.sum(0) / out.shape[0] | |
| return out.cpu() | |
| def get_cross_attention(self, | |
| prompts, | |
| attention_store: AttentionStore, | |
| res: int, | |
| from_where: List[str], | |
| select: int = 0, | |
| save_path=None): | |
| tokens = self.tokenizer.encode(prompts[select]) | |
| decoder = self.tokenizer.decode | |
| # shape: [res ** 2, res ** 2, seq_len] | |
| attention_maps = self.aggregate_attention(prompts, attention_store, res, from_where, True, select) | |
| images = [] | |
| for i in range(len(tokens)): | |
| image = attention_maps[:, :, i] | |
| image = 255 * image / image.max() | |
| image = image.unsqueeze(-1).expand(*image.shape, 3) | |
| image = image.numpy().astype(np.uint8) | |
| image = np.array(Image.fromarray(image).resize((256, 256))) | |
| image = text_under_image(image, decoder(int(tokens[i]))) | |
| images.append(image) | |
| image_array = np.stack(images, axis=0) | |
| view_images(image_array, save_image=True, fp=save_path) | |
| return attention_maps, tokens | |
| def get_self_attention_comp(self, | |
| prompts, | |
| attention_store: AttentionStore, | |
| res: int, | |
| from_where: List[str], | |
| img_size: int = 224, | |
| max_com=10, | |
| select: int = 0, | |
| save_path: AnyStr = None): | |
| attention_maps = self.aggregate_attention(prompts, attention_store, res, from_where, False, select) | |
| attention_maps = attention_maps.numpy().reshape((res ** 2, res ** 2)) | |
| # shape: [res ** 2, res ** 2] | |
| u, s, vh = np.linalg.svd(attention_maps - np.mean(attention_maps, axis=1, keepdims=True)) | |
| print(f"self-attention_maps: {attention_maps.shape}, " | |
| f"u: {u.shape}, " | |
| f"s: {s.shape}, " | |
| f"vh: {vh.shape}") | |
| images = [] | |
| vh_returns = [] | |
| for i in range(max_com): | |
| image = vh[i].reshape(res, res) | |
| image = (image - image.min()) / (image.max() - image.min()) | |
| image = 255 * image | |
| ret_ = Image.fromarray(image).resize((img_size, img_size), resample=PIL.Image.Resampling.BILINEAR) | |
| vh_returns.append(np.array(ret_)) | |
| image = np.repeat(np.expand_dims(image, axis=2), 3, axis=2).astype(np.uint8) | |
| image = Image.fromarray(image).resize((256, 256)) | |
| image = np.array(image) | |
| images.append(image) | |
| image_array = np.stack(images, axis=0) | |
| view_images(image_array, num_rows=max_com // 10, offset_ratio=0, | |
| save_image=True, fp=save_path / "self-attn-vh.png") | |
| return attention_maps, (u, s, vh), np.stack(vh_returns, axis=0) | |
| class P2PCrossAttnProcessor: | |
| def __init__(self, controller, place_in_unet): | |
| super().__init__() | |
| self.controller = controller | |
| self.place_in_unet = place_in_unet | |
| def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None): | |
| batch_size, sequence_length, _ = hidden_states.shape | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size=batch_size) | |
| query = attn.to_q(hidden_states) | |
| is_cross = encoder_hidden_states is not None | |
| encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| query = attn.head_to_batch_dim(query) | |
| key = attn.head_to_batch_dim(key) | |
| value = attn.head_to_batch_dim(value) | |
| attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
| # one line change | |
| self.controller(attention_probs, is_cross, self.place_in_unet) | |
| hidden_states = torch.bmm(attention_probs, value) | |
| hidden_states = attn.batch_to_head_dim(hidden_states) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| return hidden_states | |
| class SpecifyGradient(torch.autograd.Function): | |
| def forward(ctx, input_tensor, gt_grad): | |
| ctx.save_for_backward(gt_grad) | |
| # we return a dummy value 1, which will be scaled by amp's scaler so we get the scale in backward. | |
| return torch.ones([1], device=input_tensor.device, dtype=input_tensor.dtype) | |
| def backward(ctx, grad_scale): | |
| gt_grad, = ctx.saved_tensors | |
| gt_grad = gt_grad * grad_scale | |
| return gt_grad, None | |