Spaces:
Sleeping
Sleeping
| # -*- coding: utf-8 -*- | |
| # Copyright (c) XiMing Xing. All rights reserved. | |
| # Author: XiMing Xing | |
| # Description: | |
| import PIL | |
| from PIL import Image | |
| from typing import Callable, List, Optional, Union, Tuple, AnyStr | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| from torch.cuda.amp import custom_bwd, custom_fwd | |
| from torchvision import transforms | |
| from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
| from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline | |
| from pytorch_svgrender.token2attn.attn_control import AttentionStore | |
| from pytorch_svgrender.token2attn.ptp_utils import text_under_image, view_images | |
| class Token2AttnMixinASDSPipeline(StableDiffusionPipeline): | |
| r""" | |
| Pipeline for text-to-image generation using Stable Diffusion. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| text_encoder ([`CLIPTextModel`]): | |
| Frozen text-encoder. Stable Diffusion uses the text portion of | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
| the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
| tokenizer (`CLIPTokenizer`): | |
| Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
| unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
| [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
| safety_checker ([`StableDiffusionSafetyChecker`]): | |
| Classification module that estimates whether generated images could be considered offensive or harmful. | |
| Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. | |
| feature_extractor ([`CLIPFeatureExtractor`]): | |
| Model that extracts features from generated images to be used as inputs for the `safety_checker`. | |
| """ | |
| _optional_components = ["safety_checker", "feature_extractor"] | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]], | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| controller: AttentionStore = None, # feed attention_store as control of ptp | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: Optional[int] = 1, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`): | |
| The prompt or prompts to guide the image generation. | |
| height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
| if `guidance_scale` is less than `1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
| [`schedulers.DDIMScheduler`], will be ignored for others. | |
| generator (`torch.Generator`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that will be called every `callback_steps` steps during inference. The function will be | |
| called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function will be called. If not specified, the callback will be | |
| called at every step. | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
| When returning a tuple, the first element is a list with the generated images, and the second element is a | |
| list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
| (nsfw) content, according to the `safety_checker`. | |
| """ | |
| self.register_attention_control(controller) # add attention controller | |
| # 0. Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs(prompt, height, width, callback_steps) | |
| # 2. Define call parameters | |
| batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| text_embeddings = self._encode_prompt( | |
| prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt | |
| ) | |
| # 4. Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # 5. Prepare latent variables | |
| try: | |
| num_channels_latents = self.unet.config.in_channels | |
| except Exception or Warning: | |
| num_channels_latents = self.unet.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| text_embeddings.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 6. Prepare extra step kwargs. inherit TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 7. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # predict the noise residual | |
| noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
| # step callback | |
| latents = controller.step_callback(latents) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, t, latents) | |
| # image = self.decode_latents(latents) | |
| # 8. Post-processing | |
| # 9. Run safety checker | |
| if not output_type == "latent": | |
| image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
| image, has_nsfw_concept = self.run_safety_checker(image, device, text_embeddings.dtype) | |
| else: | |
| image = latents | |
| has_nsfw_concept = None | |
| if has_nsfw_concept is None: | |
| do_denormalize = [True] * image.shape[0] | |
| else: | |
| do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
| # 10. Convert to output_type | |
| image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
| if not return_dict: | |
| return (image, has_nsfw_concept) | |
| return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |
| def encode_(self, images): | |
| images = (2 * images - 1).clamp(-1.0, 1.0) # images: [B, 3, H, W] | |
| # encode images | |
| latents = self.vae.encode(images).latent_dist.sample() | |
| latents = self.vae.config.scaling_factor * latents | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def S_aug(sketch: torch.Tensor, | |
| crop_size: int = 512, | |
| augments: str = "affine_contrast"): | |
| # init augmentations | |
| augment_list = [] | |
| if "affine" in augments: | |
| augment_list.append( | |
| transforms.RandomPerspective(fill=0, p=1.0, distortion_scale=0.5) | |
| ) | |
| augment_list.append( | |
| transforms.RandomResizedCrop(crop_size, scale=(0.8, 0.8), ratio=(1.0, 1.0)) | |
| ) | |
| if "contrast" in augments: | |
| # 2: increases the sharpness by a factor of 2. | |
| augment_list.append( | |
| transforms.RandomAdjustSharpness(sharpness_factor=2) | |
| ) | |
| augment_compose = transforms.Compose(augment_list) | |
| return augment_compose(sketch) | |
| def score_distillation_sampling(self, | |
| pred_rgb: torch.Tensor, | |
| crop_size: int, | |
| augments: str, | |
| prompt: Union[List, str], | |
| negative_prompt: Union[List, str] = None, | |
| guidance_scale: float = 100, | |
| as_latent: bool = False, | |
| grad_scale: float = 1, | |
| t_range: Union[List[float], Tuple[float]] = (0.02, 0.98)): | |
| num_train_timesteps = self.scheduler.config.num_train_timesteps | |
| min_step = int(num_train_timesteps * t_range[0]) | |
| max_step = int(num_train_timesteps * t_range[1]) | |
| alphas = self.scheduler.alphas_cumprod.to(self.device) # for convenience | |
| # sketch augmentation | |
| pred_rgb_a = self.S_aug(pred_rgb, crop_size, augments) | |
| # interp to crop_size x crop_size to be fed into vae. | |
| if as_latent: | |
| latents = F.interpolate(pred_rgb_a, (64, 64), mode='bilinear', align_corners=False) * 2 - 1 | |
| else: | |
| # encode image into latents with vae, requires grad! | |
| latents = self.encode_(pred_rgb_a) | |
| # Encode input prompt | |
| num_images_per_prompt = 1 # the number of images to generate per prompt | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| text_embeddings = self._encode_prompt( | |
| prompt, self.device, num_images_per_prompt, do_classifier_free_guidance, | |
| negative_prompt=negative_prompt, | |
| ) | |
| # timestep ~ U(0.02, 0.98) to avoid very high/low noise level | |
| t = torch.randint(min_step, max_step + 1, [1], dtype=torch.long, device=self.device) | |
| # predict the noise residual with unet, stop gradient | |
| with torch.no_grad(): | |
| # add noise | |
| noise = torch.randn_like(latents) | |
| latents_noisy = self.scheduler.add_noise(latents, noise, t) | |
| # pred noise | |
| latent_model_input = torch.cat([latents_noisy] * 2) if do_classifier_free_guidance else latents_noisy | |
| noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample | |
| # perform guidance (high scale from paper!) | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_pos = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_pos - noise_pred_uncond) | |
| # w(t), sigma_t^2 | |
| w = (1 - alphas[t]) | |
| grad = grad_scale * w * (noise_pred - noise) | |
| grad = torch.nan_to_num(grad) | |
| # since we omitted an item in grad, we need to use the custom function to specify the gradient | |
| loss = SpecifyGradient.apply(latents, grad) | |
| return loss, grad.mean() | |
| def register_attention_control(self, controller): | |
| attn_procs = {} | |
| cross_att_count = 0 | |
| for name in self.unet.attn_processors.keys(): | |
| cross_attention_dim = None if name.endswith("attn1.processor") else self.unet.config.cross_attention_dim | |
| if name.startswith("mid_block"): | |
| hidden_size = self.unet.config.block_out_channels[-1] | |
| place_in_unet = "mid" | |
| elif name.startswith("up_blocks"): | |
| block_id = int(name[len("up_blocks.")]) | |
| hidden_size = list(reversed(self.unet.config.block_out_channels))[block_id] | |
| place_in_unet = "up" | |
| elif name.startswith("down_blocks"): | |
| block_id = int(name[len("down_blocks.")]) | |
| hidden_size = self.unet.config.block_out_channels[block_id] | |
| place_in_unet = "down" | |
| else: | |
| continue | |
| cross_att_count += 1 | |
| attn_procs[name] = P2PCrossAttnProcessor( | |
| controller=controller, place_in_unet=place_in_unet | |
| ) | |
| self.unet.set_attn_processor(attn_procs) | |
| controller.num_att_layers = cross_att_count | |
| def aggregate_attention(prompts, | |
| attention_store: AttentionStore, | |
| res: int, | |
| from_where: List[str], | |
| is_cross: bool, | |
| select: int): | |
| if isinstance(prompts, str): | |
| prompts = [prompts] | |
| assert isinstance(prompts, list) | |
| out = [] | |
| attention_maps = attention_store.get_average_attention() | |
| num_pixels = res ** 2 | |
| for location in from_where: | |
| for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]: | |
| if item.shape[1] == num_pixels: | |
| cross_maps = item.reshape(len(prompts), -1, res, res, item.shape[-1])[select] | |
| out.append(cross_maps) | |
| out = torch.cat(out, dim=0) | |
| out = out.sum(0) / out.shape[0] | |
| return out.cpu() | |
| def get_cross_attention(self, | |
| prompts, | |
| attention_store: AttentionStore, | |
| res: int, | |
| from_where: List[str], | |
| select: int = 0, | |
| save_path=None): | |
| tokens = self.tokenizer.encode(prompts[select]) | |
| decoder = self.tokenizer.decode | |
| # shape: [res ** 2, res ** 2, seq_len] | |
| attention_maps = self.aggregate_attention(prompts, attention_store, res, from_where, True, select) | |
| images = [] | |
| for i in range(len(tokens)): | |
| image = attention_maps[:, :, i] | |
| image = 255 * image / image.max() | |
| image = image.unsqueeze(-1).expand(*image.shape, 3) | |
| image = image.numpy().astype(np.uint8) | |
| image = np.array(Image.fromarray(image).resize((256, 256))) | |
| image = text_under_image(image, decoder(int(tokens[i]))) | |
| images.append(image) | |
| image_array = np.stack(images, axis=0) | |
| view_images(image_array, save_image=True, fp=save_path) | |
| return attention_maps, tokens | |
| def get_self_attention_comp(self, | |
| prompts, | |
| attention_store: AttentionStore, | |
| res: int, | |
| from_where: List[str], | |
| img_size: int = 224, | |
| max_com=10, | |
| select: int = 0, | |
| save_path: AnyStr = None): | |
| attention_maps = self.aggregate_attention(prompts, attention_store, res, from_where, False, select) | |
| attention_maps = attention_maps.numpy().reshape((res ** 2, res ** 2)) | |
| # shape: [res ** 2, res ** 2] | |
| u, s, vh = np.linalg.svd(attention_maps - np.mean(attention_maps, axis=1, keepdims=True)) | |
| print(f"self-attention_maps: {attention_maps.shape}, " | |
| f"u: {u.shape}, " | |
| f"s: {s.shape}, " | |
| f"vh: {vh.shape}") | |
| images = [] | |
| vh_returns = [] | |
| for i in range(max_com): | |
| image = vh[i].reshape(res, res) | |
| image = (image - image.min()) / (image.max() - image.min()) | |
| image = 255 * image | |
| ret_ = Image.fromarray(image).resize((img_size, img_size), resample=PIL.Image.Resampling.BILINEAR) | |
| vh_returns.append(np.array(ret_)) | |
| image = np.repeat(np.expand_dims(image, axis=2), 3, axis=2).astype(np.uint8) | |
| image = Image.fromarray(image).resize((256, 256)) | |
| image = np.array(image) | |
| images.append(image) | |
| image_array = np.stack(images, axis=0) | |
| view_images(image_array, num_rows=max_com // 10, offset_ratio=0, | |
| save_image=True, fp=save_path / "self-attn-vh.png") | |
| return attention_maps, (u, s, vh), np.stack(vh_returns, axis=0) | |
| class P2PCrossAttnProcessor: | |
| def __init__(self, controller, place_in_unet): | |
| super().__init__() | |
| self.controller = controller | |
| self.place_in_unet = place_in_unet | |
| def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None): | |
| batch_size, sequence_length, _ = hidden_states.shape | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size=batch_size) | |
| query = attn.to_q(hidden_states) | |
| is_cross = encoder_hidden_states is not None | |
| encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| query = attn.head_to_batch_dim(query) | |
| key = attn.head_to_batch_dim(key) | |
| value = attn.head_to_batch_dim(value) | |
| attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
| # one line change | |
| self.controller(attention_probs, is_cross, self.place_in_unet) | |
| hidden_states = torch.bmm(attention_probs, value) | |
| hidden_states = attn.batch_to_head_dim(hidden_states) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| return hidden_states | |
| class SpecifyGradient(torch.autograd.Function): | |
| def forward(ctx, input_tensor, gt_grad): | |
| ctx.save_for_backward(gt_grad) | |
| # we return a dummy value 1, which will be scaled by amp's scaler so we get the scale in backward. | |
| return torch.ones([1], device=input_tensor.device, dtype=input_tensor.dtype) | |
| def backward(ctx, grad_scale): | |
| gt_grad, = ctx.saved_tensors | |
| gt_grad = gt_grad * grad_scale | |
| return gt_grad, None | |