Spaces:
Running
Running
| # -*- coding: utf-8 -*- | |
| # Copyright (c) XiMing Xing. All rights reserved. | |
| # Author: XiMing Xing | |
| # Description: | |
| import re | |
| from typing import Any, List, Optional, Union, Dict | |
| from omegaconf import DictConfig | |
| import torch | |
| import torch.nn.functional as F | |
| from torchvision import transforms | |
| from diffusers import StableDiffusionPipeline, UNet2DConditionModel | |
| from diffusers import DDIMScheduler | |
| from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import ( | |
| rescale_noise_cfg, StableDiffusionPipelineOutput) | |
| from diffusers.models.attention_processor import LoRAAttnProcessor | |
| from diffusers.loaders import AttnProcsLayers | |
| from pytorch_svgrender.diffusers_warp import init_StableDiffusion_pipeline, init_diffusers_unet | |
| class VectorizedParticleSDSPipeline(torch.nn.Module): | |
| def __init__(self, args: DictConfig, diffuser_cfg: DictConfig, guidance_cfg: DictConfig, device: torch.device): | |
| super().__init__() | |
| self.args = args | |
| self.device = device | |
| assert guidance_cfg.n_particle >= guidance_cfg.vsd_n_particle | |
| assert guidance_cfg.n_particle >= guidance_cfg.phi_n_particle | |
| pipe_kwargs = { | |
| "device": self.device, | |
| "torch_dtype": torch.float32, | |
| "local_files_only": not diffuser_cfg.download, | |
| "force_download": diffuser_cfg.force_download, | |
| "resume_download": diffuser_cfg.resume_download, | |
| "ldm_speed_up": args.x.ldm_speed_up, | |
| "enable_xformers": args.x.enable_xformers, | |
| "gradient_checkpoint": args.x.gradient_checkpoint, | |
| "cpu_offload": args.x.cpu_offload, | |
| "vae_slicing": False | |
| } | |
| # load pretrained model | |
| self.sd_pipeline = init_StableDiffusion_pipeline( | |
| args.x.model_id, | |
| custom_pipeline=StableDiffusionPipeline, | |
| custom_scheduler=DDIMScheduler, | |
| **pipe_kwargs | |
| ) | |
| # disable grads | |
| self.sd_pipeline.vae.requires_grad_(False) | |
| self.sd_pipeline.text_encoder.requires_grad_(False) | |
| self.sd_pipeline.unet.requires_grad_(False) | |
| # set components | |
| self.vae = self.sd_pipeline.vae | |
| self.unet = self.sd_pipeline.unet | |
| self.scheduler = self.sd_pipeline.scheduler | |
| self.tokenizer = self.sd_pipeline.tokenizer | |
| self.text_encoder = self.sd_pipeline.text_encoder | |
| if guidance_cfg.phi_model == 'lora': | |
| if guidance_cfg.phi_single: # default, use the single unet | |
| # load LoRA model from the pretrained model | |
| unet_ = self.unet | |
| else: | |
| # create a new unet model | |
| pipe_kwargs.pop('cpu_offload') | |
| pipe_kwargs.pop('vae_slicing') | |
| unet_ = init_diffusers_unet(args.x.model_id, **pipe_kwargs) | |
| # set correct LoRA layers | |
| self.unet_phi, phi_model_layers = self.set_lora_layers(unet_) | |
| self.phi_params = list(phi_model_layers.parameters()) | |
| self.lora_cross_attention_kwargs = {"scale": guidance_cfg.lora_attn_scale} \ | |
| if guidance_cfg.use_attn_scale else {} | |
| self.vae_phi = self.vae | |
| self.vae_phi.requires_grad_(False) | |
| elif guidance_cfg.phi_model == 'unet_simple': | |
| self.unet_phi = UNet2DConditionModel( | |
| sample_size=64, | |
| in_channels=4, | |
| out_channels=4, | |
| layers_per_block=1, | |
| block_out_channels=(128, 256, 384, 512), | |
| down_block_types=( | |
| "DownBlock2D", | |
| "AttnDownBlock2D", | |
| "AttnDownBlock2D", | |
| "AttnDownBlock2D", | |
| ), | |
| up_block_types=( | |
| "AttnUpBlock2D", | |
| "AttnUpBlock2D", | |
| "AttnUpBlock2D", | |
| "UpBlock2D", | |
| ), | |
| cross_attention_dim=self.unet.config.cross_attention_dim | |
| ).to(device) | |
| self.phi_params = list(self.unet_phi.parameters()) | |
| self.vae_phi = self.vae | |
| # reset lora | |
| guidance_cfg.use_attn_scale = False | |
| guidance_cfg.lora_attn_scale = False | |
| # hyper-params | |
| self.phi_single = guidance_cfg.phi_single | |
| self.guidance_scale: float = guidance_cfg.guidance_scale | |
| self.guidance_scale_lora: float = guidance_cfg.phi_guidance_scale | |
| self.grad_clip_val: Union[float, None] = guidance_cfg.grad_clip_val | |
| self.vsd_n_particle: int = guidance_cfg.vsd_n_particle | |
| self.phi_n_particle: int = guidance_cfg.phi_n_particle | |
| self.t_schedule: str = guidance_cfg.t_schedule | |
| self.t_range = list(guidance_cfg.t_range) | |
| print( | |
| f'n_particles: {guidance_cfg.n_particle}, ' | |
| f'enhance_particles: {guidance_cfg.particle_aug}, ' | |
| f'n_particles of score: {self.vsd_n_particle}, ' | |
| f'n_particles of phi_model: {self.phi_n_particle}, \n' | |
| f't_range: {self.t_range}, ' | |
| f't_schedule: {self.t_schedule}, \n' | |
| f'guidance_scale: {self.guidance_scale}, phi_guidance_scale: {self.guidance_scale_lora}.' | |
| ) | |
| print(f"phi_model: {guidance_cfg.phi_model}, " | |
| f"use lora_cross_attn: {guidance_cfg.use_attn_scale}, " | |
| f"lora_attn_scale: {guidance_cfg.lora_attn_scale}. \n") | |
| # for convenience | |
| self.num_train_timesteps = self.scheduler.config.num_train_timesteps | |
| self.alphas = self.scheduler.alphas_cumprod.to(self.device) | |
| self.text_embeddings = None | |
| self.text_embedd_cond, self.text_embedd_uncond = None, None | |
| self.text_embeddings_phi = None | |
| self.t = None | |
| def set_lora_layers(self, unet): # set correct lora layers | |
| lora_attn_procs = {} | |
| for name in unet.attn_processors.keys(): | |
| cross_attention_dim = None if name.endswith("attn1.processor") \ | |
| else unet.config.cross_attention_dim | |
| if name.startswith("mid_block"): | |
| hidden_size = unet.config.block_out_channels[-1] | |
| elif name.startswith("up_blocks"): | |
| block_id = int(name[len("up_blocks.")]) | |
| hidden_size = list(reversed(unet.config.block_out_channels))[block_id] | |
| elif name.startswith("down_blocks"): | |
| block_id = int(name[len("down_blocks.")]) | |
| hidden_size = unet.config.block_out_channels[block_id] | |
| lora_attn_procs[name] = LoRAAttnProcessor( | |
| hidden_size=hidden_size, | |
| cross_attention_dim=cross_attention_dim | |
| ).to(self.device) | |
| unet.set_attn_processor(lora_attn_procs) | |
| lora_layers = AttnProcsLayers(unet.attn_processors) | |
| unet.requires_grad_(False) | |
| for param in lora_layers.parameters(): | |
| param.requires_grad_(True) | |
| return unet, lora_layers | |
| def encode_prompt(self, | |
| prompt, | |
| device, | |
| do_classifier_free_guidance, | |
| negative_prompt=None): | |
| # text conditional embed | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| prompt_embeds = self.text_encoder(text_inputs.input_ids.to(device))[0] | |
| if do_classifier_free_guidance: | |
| if negative_prompt is None: | |
| uncond_tokens = [""] | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| else: | |
| uncond_tokens = negative_prompt | |
| # unconditional embed | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=prompt_embeds.shape[1], | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device))[0] | |
| concat_prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| return concat_prompt_embeds, negative_prompt_embeds, prompt_embeds | |
| return prompt_embeds, None, None | |
| def sampling(self, | |
| vae, | |
| unet, | |
| scheduler, | |
| prompt: Union[str, List[str]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| guidance_rescale: float = 0.0): | |
| # 0. Default height and width to unet | |
| vae_scale_factor = 2 ** (len(vae.config.block_out_channels) - 1) | |
| height = height or unet.config.sample_size * vae_scale_factor | |
| width = width or unet.config.sample_size * vae_scale_factor | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = 1 | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| prompt_embeds, _, _ = self.encode_prompt( | |
| prompt, | |
| self.device, | |
| do_classifier_free_guidance, | |
| negative_prompt, | |
| ) | |
| # 4. Prepare timesteps | |
| scheduler.set_timesteps(num_inference_steps, device=self.device) | |
| timesteps = scheduler.timesteps | |
| # 5. Prepare latent variables | |
| num_channels_latents = unet.config.in_channels | |
| latents = self.sd_pipeline.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| self.device, | |
| generator, | |
| latents, | |
| ) | |
| # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.sd_pipeline.prepare_extra_step_kwargs(generator, eta) | |
| # 7. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| with self.sd_pipeline.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = scheduler.scale_model_input(latent_model_input, t) | |
| # predict the noise residual | |
| noise_pred = unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| if do_classifier_free_guidance and guidance_rescale > 0.0: | |
| # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
| noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
| # update progress_bar | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if not output_type == "latent": | |
| image = vae.decode(latents / vae.config.scaling_factor, return_dict=False)[0] | |
| image, has_nsfw_concept = self.sd_pipeline.run_safety_checker(image, self.device, prompt_embeds.dtype) | |
| else: | |
| image = latents | |
| has_nsfw_concept = None | |
| if has_nsfw_concept is None: | |
| do_denormalize = [True] * image.shape[0] | |
| else: | |
| do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
| image = self.sd_pipeline.image_processor.postprocess(image, output_type=output_type, | |
| do_denormalize=do_denormalize) | |
| # Offload last model to CPU | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.final_offload_hook.offload() | |
| if not return_dict: | |
| return (image, has_nsfw_concept) | |
| return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |
| def sample(self, | |
| prompt, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| output_type: Optional[str] = "pil"): | |
| return self.sampling(self.vae, self.unet, self.scheduler, | |
| prompt=prompt, | |
| height=height, width=width, | |
| num_inference_steps=num_inference_steps, | |
| guidance_scale=self.guidance_scale, | |
| generator=generator, | |
| output_type=output_type) | |
| def sample_lora(self, | |
| prompt, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| output_type: Optional[str] = "pil"): | |
| return self.sampling(self.vae_phi, self.unet_phi, self.scheduler, | |
| prompt=prompt, | |
| height=height, width=width, | |
| num_inference_steps=num_inference_steps, | |
| guidance_scale=self.guidance_scale_lora, | |
| generator=generator, | |
| cross_attention_kwargs=self.lora_cross_attention_kwargs, | |
| output_type=output_type) | |
| def encode2latent(self, images): | |
| images = (2 * images - 1).clamp(-1.0, 1.0) # images: [B, 3, H, W] | |
| # encode images | |
| latents = self.vae.encode(images).latent_dist.sample() | |
| latents = self.vae.config.scaling_factor * latents | |
| return latents | |
| def get_noise_map(self, noise_pred, guidance_scale=7.5, use_cfg=True): | |
| if use_cfg: | |
| noise_pred_uncond, noise_pred_pos = noise_pred.chunk(2) | |
| noise_map = noise_pred_uncond + guidance_scale * (noise_pred_pos - noise_pred_uncond) | |
| return noise_map | |
| else: | |
| return noise_pred | |
| def train_phi_model(self, | |
| pred_rgb: torch.Tensor, | |
| new_timesteps: bool = False, | |
| as_latent: bool = False): | |
| # interp to 512x512 to be fed into vae. | |
| if as_latent: | |
| latents = pred_rgb | |
| else: | |
| pred_rgb_ = F.interpolate(pred_rgb, (512, 512), mode='bilinear', align_corners=False) | |
| # encode image into latents with vae, requires grad! | |
| latents = self.encode2latent(pred_rgb_) | |
| # get phi particles | |
| indices = torch.randperm(latents.size(0)) | |
| latents_phi = latents[indices[:self.phi_n_particle]] | |
| latents_phi = latents_phi.detach() | |
| # get timestep | |
| if new_timesteps: | |
| t = torch.randint(0, self.num_train_timesteps, (1,), device=self.device) | |
| else: | |
| t = self.t | |
| noise = torch.randn_like(latents_phi) | |
| noisy_latents = self.scheduler.add_noise(latents_phi, noise, t) | |
| if self.scheduler.config.prediction_type == "epsilon": | |
| target = noise | |
| elif self.scheduler.config.prediction_type == "v_prediction": | |
| target = self.scheduler.get_velocity(latents_phi, noise, t) | |
| else: | |
| raise ValueError(f"Unknown prediction type {self.scheduler.config.prediction_type}") | |
| # predict the noise residual and compute loss | |
| noise_pred = self.unet_phi( | |
| noisy_latents, t, | |
| encoder_hidden_states=self.text_embeddings_phi, | |
| cross_attention_kwargs=self.lora_cross_attention_kwargs, | |
| ).sample | |
| return F.mse_loss(noise_pred, target, reduction="mean") | |
| def train_phi_model_refl(self, | |
| pred_rgb: torch.Tensor, | |
| weight: float = 1, | |
| new_timesteps: bool = True): | |
| # interp to 512x512 to be fed into vae. | |
| pred_rgb_ = F.interpolate(pred_rgb, (512, 512), mode='bilinear', align_corners=False) | |
| # encode image into latents with vae, requires grad! | |
| latents = self.encode2latent(pred_rgb_) | |
| # get phi particles | |
| indices = torch.randperm(latents.size(0)) | |
| latents_phi = latents[indices[:self.phi_n_particle]] | |
| latents_phi = latents_phi.detach() | |
| # get timestep | |
| if new_timesteps: | |
| t = torch.randint(0, self.num_train_timesteps, (1,), device=self.device) | |
| else: | |
| t = self.t | |
| noise = torch.randn_like(latents_phi) | |
| noisy_latents = self.scheduler.add_noise(latents_phi, noise, t) | |
| if self.scheduler.config.prediction_type == "epsilon": | |
| target = noise | |
| elif self.scheduler.config.prediction_type == "v_prediction": | |
| target = self.scheduler.get_velocity(latents_phi, noise, t) | |
| else: | |
| raise ValueError(f"Unknown prediction type {self.scheduler.config.prediction_type}") | |
| # predict the noise residual and compute loss | |
| noise_pred = self.unet_phi( | |
| noisy_latents, t, | |
| encoder_hidden_states=self.text_embedd_cond, | |
| cross_attention_kwargs=self.lora_cross_attention_kwargs, | |
| ).sample | |
| rewards = torch.tensor(weight, dtype=torch.float32, device=self.device) | |
| return rewards * F.mse_loss(noise_pred, target, reduction="mean") | |
| def schedule_timestep(self, step): | |
| min_step = int(self.num_train_timesteps * self.t_range[0]) | |
| max_step = int(self.num_train_timesteps * self.t_range[1]) | |
| if self.t_schedule == 'randint': | |
| t = torch.randint(min_step, max_step + 1, [1], dtype=torch.long, device=self.device) | |
| elif re.match(r"max_([\d.]+)_(\d+)", self.t_schedule): | |
| # Anneal time schedule | |
| # e.g: t_schedule == 'max_0.5_200' | |
| # [0.02, 0.98] -> [0.02, 0.5] after 200 steps | |
| tag, t_val, step_upd = str(self.t_schedule).split('_') | |
| t_val, step_upd = float(t_val), int(step_upd) | |
| if step >= step_upd: | |
| max_step = int(self.num_train_timesteps * t_val) | |
| t = torch.randint(min_step, max_step + 1, [1], dtype=torch.long, device=self.device) | |
| elif re.match(r"min_([\d.]+)_(\d+)", self.t_schedule): | |
| # Anneal time schedule | |
| # e.g: t_schedule == 'min_0.5_200' | |
| # [0.02, 0.98] -> [0.5, 0.98] after 200 steps | |
| tag, t_val, step_upd = str(self.t_schedule).split('_') | |
| t_val, step_upd = float(t_val), int(step_upd) | |
| if step >= step_upd: | |
| min_step = int(self.num_train_timesteps * t_val) | |
| t = torch.randint(min_step, max_step + 1, [1], dtype=torch.long, device=self.device) | |
| else: | |
| raise NotImplementedError(f"{self.t_schedule} is not support.") | |
| return t | |
| def set_text_embeddings(self, prompt, negative_prompt, do_classifier_free_guidance): | |
| if self.text_embeddings is not None: | |
| return | |
| # encode text prompt | |
| text_embeddings, text_embeddings_uncond, text_embeddings_cond = \ | |
| self.encode_prompt(prompt, self.device, do_classifier_free_guidance, negative_prompt=negative_prompt) | |
| # set pretrained model text embedding | |
| text_embeddings_uncond, text_embeddings_cond = text_embeddings.chunk(2) | |
| self.text_embedd_uncond, self.text_embedd_cond = text_embeddings_uncond, text_embeddings_cond | |
| text_embeddings_unconds = text_embeddings_uncond.repeat_interleave(self.vsd_n_particle, dim=0) | |
| text_embeddings_conds = text_embeddings_cond.repeat_interleave(self.vsd_n_particle, dim=0) | |
| text_embeddings = torch.cat([text_embeddings_unconds, text_embeddings_conds]) | |
| self.text_embeddings = text_embeddings | |
| # set phi model text embedding | |
| self.text_embeddings_phi = text_embeddings_cond.repeat_interleave(self.phi_n_particle, dim=0) | |
| def x_augment(self, x: torch.Tensor, img_size: int = 512): | |
| augment_compose = transforms.Compose([ | |
| transforms.RandomPerspective(distortion_scale=0.5, p=0.7), | |
| transforms.RandomCrop(size=(img_size, img_size), pad_if_needed=True, padding_mode='reflect') | |
| ]) | |
| return augment_compose(x) | |
| def variational_score_distillation(self, | |
| pred_rgb: torch.Tensor, | |
| step: int, | |
| prompt: Union[List, str], | |
| negative_prompt: Union[List, str] = None, | |
| grad_scale: float = 1.0, | |
| enhance_particle: bool = False, | |
| im_size: int = 512, | |
| as_latent: bool = False): | |
| bz = pred_rgb.shape[0] | |
| # data enhancement for the input particles | |
| pred_rgb = self.x_augment(pred_rgb, im_size) if enhance_particle else pred_rgb | |
| # interp to 512x512 to be fed into vae. | |
| if as_latent: | |
| latents = F.interpolate(pred_rgb, (64, 64), mode='bilinear', align_corners=False) * 2 - 1 | |
| else: | |
| pred_rgb_ = F.interpolate(pred_rgb, (512, 512), mode='bilinear', align_corners=False) | |
| # encode image into latents with vae, requires grad! | |
| # latents = self.encode2latent(pred_rgb_) | |
| latent_list = [self.encode2latent(pred_rgb_[i].unsqueeze(0)) for i in range(bz)] | |
| latents = torch.cat(latent_list, dim=0) | |
| latents = latents.to(self.device) | |
| # random sample n_particle_vsd particles from latents | |
| latents_vsd = latents[torch.randperm(bz)[:self.vsd_n_particle]] | |
| # encode input prompt | |
| do_classifier_free_guidance = True | |
| self.set_text_embeddings(prompt, negative_prompt, do_classifier_free_guidance) | |
| text_embeddings = self.text_embeddings | |
| # timestep a.k.a noise level | |
| self.t = self.schedule_timestep(step) | |
| # predict the noise residual with unet, stop gradient | |
| with torch.no_grad(): | |
| # add noise | |
| noise = torch.randn_like(latents_vsd) | |
| latents_noisy = self.scheduler.add_noise(latents_vsd, noise, self.t) | |
| # pred noise | |
| latent_model_input = torch.cat([latents_noisy] * 2) if do_classifier_free_guidance else latents_noisy | |
| # pretrained noise prediction network | |
| noise_pred_pretrain = self.unet( | |
| latent_model_input, self.t, | |
| encoder_hidden_states=text_embeddings, | |
| cross_attention_kwargs={'scale': 0.0} if self.phi_single else {} | |
| ).sample | |
| # use conditional text embeddings in phi_model | |
| _, text_embeddings_cond = text_embeddings.chunk(2) | |
| # estimated noise prediction network | |
| noise_pred_est = self.unet_phi( | |
| latents_noisy, self.t, | |
| encoder_hidden_states=text_embeddings_cond, | |
| cross_attention_kwargs=self.lora_cross_attention_kwargs | |
| ).sample | |
| # get pretrained score | |
| noise_pred_pretrain = self.get_noise_map(noise_pred_pretrain, self.guidance_scale, use_cfg=True) | |
| # get estimated score | |
| noise_pred_est = self.get_noise_map(noise_pred_est, self.guidance_scale_lora, use_cfg=False) | |
| # w(t), sigma_t^2 | |
| w = (1 - self.alphas[self.t]) | |
| grad = grad_scale * w * (noise_pred_pretrain - noise_pred_est.detach()) | |
| grad = torch.nan_to_num(grad) | |
| # grad clipping for stable training | |
| if self.grad_clip_val is not None and self.grad_clip_val > 0: | |
| grad = grad.clamp(-self.grad_clip_val, self.grad_clip_val) | |
| # re-parameterization trick: | |
| # d(loss)/d(latents) = latents - target = latents - (latents - grad) = grad | |
| target = (latents_vsd - grad).detach() | |
| loss_vpsd = 0.5 * F.mse_loss(latents_vsd, target, reduction="sum") | |
| return loss_vpsd, grad.norm(), latents, self.t | |