Spaces:
Sleeping
Sleeping
| # -*- coding: utf-8 -*- | |
| # Copyright (c) XiMing Xing. All rights reserved. | |
| # Author: XiMing Xing | |
| # Description: | |
| from PIL import Image | |
| import torch | |
| from tqdm.auto import tqdm | |
| from torchvision import transforms | |
| from torchvision.transforms import InterpolationMode | |
| from torchvision.datasets.folder import is_image_file | |
| from pytorch_svgrender.libs.engine import ModelState | |
| from pytorch_svgrender.painter.clipasso import Painter, PainterOptimizer, Loss | |
| from pytorch_svgrender.painter.clipasso.sketch_utils import plot_attn, get_mask_u2net, fix_image_scale | |
| from pytorch_svgrender.plt import plot_img, plot_couple, plot_img_title | |
| class CLIPassoPipeline(ModelState): | |
| def __init__(self, args): | |
| logdir_ = f"sd{args.seed}" \ | |
| f"-im{args.x.image_size}" \ | |
| f"{'-mask' if args.x.mask_object else ''}" \ | |
| f"{'-XDoG' if args.x.xdog_intersec else ''}" \ | |
| f"-P{args.x.num_paths}W{args.x.width}{'OP' if args.x.force_sparse else 'BL'}" \ | |
| f"-tau{args.x.softmax_temp}" | |
| super().__init__(args, log_path_suffix=logdir_) | |
| # create log dir | |
| self.png_logs_dir = self.result_path / "png_logs" | |
| self.svg_logs_dir = self.result_path / "svg_logs" | |
| if self.accelerator.is_main_process: | |
| self.png_logs_dir.mkdir(parents=True, exist_ok=True) | |
| self.svg_logs_dir.mkdir(parents=True, exist_ok=True) | |
| # make video log | |
| self.make_video = self.args.mv | |
| if self.make_video: | |
| self.frame_idx = 0 | |
| self.frame_log_dir = self.result_path / "frame_logs" | |
| self.frame_log_dir.mkdir(parents=True, exist_ok=True) | |
| def painterly_rendering(self, image_path): | |
| loss_func = Loss(self.x_cfg, self.device) | |
| # preprocess input image | |
| inputs, mask = self.get_target(image_path, | |
| self.x_cfg.image_size, | |
| self.result_path, | |
| self.x_cfg.u2net_path, | |
| self.x_cfg.mask_object, | |
| self.x_cfg.fix_scale, | |
| self.device) | |
| plot_img(inputs, self.result_path, fname="input") | |
| # init renderer | |
| renderer = self.load_renderer(inputs, mask) | |
| img = renderer.init_image(stage=0) | |
| self.print("init_image shape: ", img.shape) | |
| plot_img(img, self.result_path, fname="init_img") | |
| # init optimizer | |
| optimizer = PainterOptimizer(renderer, | |
| self.x_cfg.num_iter, | |
| self.x_cfg.lr, | |
| self.x_cfg.force_sparse, self.x_cfg.color_lr) | |
| optimizer.init_optimizers() | |
| best_loss, best_fc_loss = 100, 100 | |
| min_delta = 1e-5 | |
| total_step = self.x_cfg.num_iter | |
| with tqdm(initial=self.step, total=total_step, disable=not self.accelerator.is_main_process) as pbar: | |
| while self.step < total_step: | |
| sketches = renderer.get_image().to(self.device) | |
| if self.make_video and (self.step % self.args.framefreq == 0 or self.step == total_step - 1): | |
| plot_img(sketches, self.frame_log_dir, fname=f"iter{self.frame_idx}") | |
| self.frame_idx += 1 | |
| losses_dict = loss_func(sketches, | |
| inputs.detach(), | |
| renderer.get_color_parameters(), | |
| renderer, | |
| self.step, | |
| optimizer) | |
| loss = sum(list(losses_dict.values())) | |
| optimizer.zero_grad_() | |
| loss.backward() | |
| optimizer.step_() | |
| if self.x_cfg.lr_schedule: | |
| optimizer.update_lr() | |
| pbar.set_description(f"L_train: {loss.item():.5f}") | |
| if self.step % self.args.save_step == 0 and self.accelerator.is_main_process: | |
| plot_couple(inputs, | |
| sketches, | |
| self.step, | |
| output_dir=self.png_logs_dir.as_posix(), | |
| fname=f"iter{self.step}") | |
| renderer.save_svg(self.svg_logs_dir.as_posix(), f"svg_iter{self.step}") | |
| if self.step % self.args.eval_step == 0 and self.accelerator.is_main_process: | |
| with torch.no_grad(): | |
| losses_dict_eval = loss_func( | |
| sketches, | |
| inputs, | |
| renderer.get_color_parameters(), | |
| renderer.get_point_parameters(), | |
| self.step, | |
| optimizer, | |
| mode="eval" | |
| ) | |
| loss_eval = sum(list(losses_dict_eval.values())) | |
| cur_delta = loss_eval.item() - best_loss | |
| if abs(cur_delta) > min_delta and cur_delta < 0: | |
| best_loss = loss_eval.item() | |
| best_iter = self.step | |
| plot_couple(inputs, | |
| sketches, | |
| best_iter, | |
| output_dir=self.result_path.as_posix(), | |
| fname="best_iter") | |
| renderer.save_svg(self.result_path.as_posix(), "best_iter") | |
| if self.step == 0 and self.x_cfg.attention_init and self.accelerator.is_main_process: | |
| plot_attn(renderer.get_attn(), | |
| renderer.get_thresh(), | |
| inputs, | |
| renderer.get_inds(), | |
| (self.result_path / "attention_map.png").as_posix(), | |
| self.x_cfg.saliency_model) | |
| self.step += 1 | |
| pbar.update(1) | |
| # log final results | |
| renderer.save_svg(self.result_path.as_posix(), "final_svg") | |
| final_raster_sketch = renderer.get_image().to(self.device) | |
| plot_img_title(final_raster_sketch, | |
| title=f'final result - {self.step} step', | |
| output_dir=self.result_path, | |
| fname='final_render') | |
| if self.make_video: | |
| from subprocess import call | |
| call([ | |
| "ffmpeg", | |
| "-framerate", f"{self.args.framerate}", | |
| "-i", (self.frame_log_dir / "iter%d.png").as_posix(), | |
| "-vb", "20M", | |
| (self.result_path / "clipasso_rendering.mp4").as_posix() | |
| ]) | |
| self.close(msg="painterly rendering complete.") | |
| def load_renderer(self, target_im=None, mask=None): | |
| renderer = Painter(method_cfg=self.x_cfg, | |
| diffvg_cfg=self.args.diffvg, | |
| num_strokes=self.x_cfg.num_paths, | |
| canvas_size=self.x_cfg.image_size, | |
| device=self.device, | |
| target_im=target_im, | |
| mask=mask) | |
| return renderer | |
| def get_target(self, | |
| target_file, | |
| image_size, | |
| output_dir, | |
| u2net_path, | |
| mask_object, | |
| fix_scale, | |
| device): | |
| if not is_image_file(target_file): | |
| raise TypeError(f"{target_file} is not image file.") | |
| target = Image.open(target_file) | |
| if target.mode == "RGBA": | |
| # Create a white rgba background | |
| new_image = Image.new("RGBA", target.size, "WHITE") | |
| # Paste the image on the background. | |
| new_image.paste(target, (0, 0), target) | |
| target = new_image | |
| target = target.convert("RGB") | |
| # U^2 net mask | |
| masked_im, mask = get_mask_u2net(target, output_dir, u2net_path, device) | |
| if mask_object: | |
| target = masked_im | |
| if fix_scale: | |
| target = fix_image_scale(target) | |
| transforms_ = [] | |
| if target.size[0] != target.size[1]: | |
| transforms_.append( | |
| transforms.Resize((image_size, image_size), | |
| interpolation=InterpolationMode.BICUBIC) | |
| ) | |
| else: | |
| transforms_.append(transforms.Resize(image_size, | |
| interpolation=InterpolationMode.BICUBIC)) | |
| transforms_.append(transforms.CenterCrop(image_size)) | |
| transforms_.append(transforms.ToTensor()) | |
| data_transforms = transforms.Compose(transforms_) | |
| target_ = data_transforms(target).unsqueeze(0).to(self.device) | |
| return target_, mask | |