Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -153,8 +153,13 @@ def fDistancePlot(text2Party,plotN=30):
|
|
| 153 |
fdistance = FreqDist(word_tokens_party)
|
| 154 |
plt.figure(figsize=(4,6))
|
| 155 |
fdistance.plot(plotN)
|
| 156 |
-
plt.
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
|
| 160 |
|
|
@@ -200,7 +205,7 @@ def analysis(Manifesto,Search):
|
|
| 200 |
plt.title('Sentiment Analysis')
|
| 201 |
plt.xlabel('Sentiment')
|
| 202 |
plt.ylabel('Counts')
|
| 203 |
-
plt.figure(figsize=(4,
|
| 204 |
df['Analysis on Polarity'].value_counts().plot(kind ='bar')
|
| 205 |
#plt.savefig('./sentimentAnalysis.png')
|
| 206 |
#plt.clf()
|
|
@@ -211,7 +216,7 @@ def analysis(Manifesto,Search):
|
|
| 211 |
img1 = Image.open(buf)
|
| 212 |
plt.clf()
|
| 213 |
|
| 214 |
-
plt.figure(figsize=(4,
|
| 215 |
df['Analysis on Subjectivity'].value_counts().plot(kind ='bar')
|
| 216 |
#plt.savefig('sentimentAnalysis2.png')
|
| 217 |
#plt.clf()
|
|
@@ -225,17 +230,21 @@ def analysis(Manifesto,Search):
|
|
| 225 |
wordcloud = WordCloud(max_words=2000, background_color="white",mode="RGB").generate(text_Party)
|
| 226 |
plt.figure(figsize=(4,3))
|
| 227 |
plt.imshow(wordcloud, interpolation="bilinear")
|
| 228 |
-
plt.axis("off")
|
| 229 |
-
plt.
|
| 230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
|
| 232 |
fdist_Party=fDistance(text_Party)
|
| 233 |
-
fDistancePlot(text_Party)
|
| 234 |
|
| 235 |
#img1=cv2.imread('/sentimentAnalysis.png')
|
| 236 |
#img2=cv2.imread('/wordcloud.png')
|
| 237 |
-
img3=cv2.imread('/wordcloud.png')
|
| 238 |
-
img4=cv2.imread('/distplot.png')
|
| 239 |
|
| 240 |
searchRes=concordance(text_Party,Search)
|
| 241 |
searChRes=clean(searchRes)
|
|
@@ -249,24 +258,12 @@ text = gr.outputs.Textbox(label='SEARCHED OUTPUT')
|
|
| 249 |
mfw=gr.outputs.Label(label="Most Relevant Topics")
|
| 250 |
# mfw2=gr.outputs.Image(label="Most Relevant Topics Plot")
|
| 251 |
plot1=gr.outputs. Image(label='Sentiment Analysis')
|
| 252 |
-
plot2=gr.outputs.Image(label='
|
| 253 |
-
plot3=gr.outputs.Image(label='
|
| 254 |
plot4=gr.outputs.Image(label='Frequency Distribution')
|
| 255 |
|
| 256 |
io=gr.Interface(fn=analysis, inputs=[filePdf,Search_txt], outputs=[text,mfw,plot1,plot2,plot3,plot4], title='Manifesto Analysis',examples=[['./Bjp_Manifesto_2019.pdf','india'],['./Aap_Manifesto_2019.pdf',],['./Congress_Manifesto_2019.pdf',]])
|
| 257 |
io.launch(debug=False,share=True)
|
| 258 |
|
| 259 |
|
| 260 |
-
#examples=[['/Bjp_Manifesto_2019.pdf',],['/Aap_Manifesto_2019.pdf',]],
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
|
|
|
|
| 153 |
fdistance = FreqDist(word_tokens_party)
|
| 154 |
plt.figure(figsize=(4,6))
|
| 155 |
fdistance.plot(plotN)
|
| 156 |
+
plt.tight_layout()
|
| 157 |
+
buf = BytesIO()
|
| 158 |
+
plt.savefig(buf)
|
| 159 |
+
buf.seek(0)
|
| 160 |
+
img1 = Image.open(buf)
|
| 161 |
+
plt.clf()
|
| 162 |
+
return img1
|
| 163 |
|
| 164 |
|
| 165 |
|
|
|
|
| 205 |
plt.title('Sentiment Analysis')
|
| 206 |
plt.xlabel('Sentiment')
|
| 207 |
plt.ylabel('Counts')
|
| 208 |
+
plt.figure(figsize=(4,3))
|
| 209 |
df['Analysis on Polarity'].value_counts().plot(kind ='bar')
|
| 210 |
#plt.savefig('./sentimentAnalysis.png')
|
| 211 |
#plt.clf()
|
|
|
|
| 216 |
img1 = Image.open(buf)
|
| 217 |
plt.clf()
|
| 218 |
|
| 219 |
+
plt.figure(figsize=(4,3))
|
| 220 |
df['Analysis on Subjectivity'].value_counts().plot(kind ='bar')
|
| 221 |
#plt.savefig('sentimentAnalysis2.png')
|
| 222 |
#plt.clf()
|
|
|
|
| 230 |
wordcloud = WordCloud(max_words=2000, background_color="white",mode="RGB").generate(text_Party)
|
| 231 |
plt.figure(figsize=(4,3))
|
| 232 |
plt.imshow(wordcloud, interpolation="bilinear")
|
| 233 |
+
plt.axis("off")
|
| 234 |
+
plt.tight_layout()
|
| 235 |
+
buf = BytesIO()
|
| 236 |
+
plt.savefig(buf)
|
| 237 |
+
buf.seek(0)
|
| 238 |
+
img3 = Image.open(buf)
|
| 239 |
+
plt.clf()
|
| 240 |
|
| 241 |
fdist_Party=fDistance(text_Party)
|
| 242 |
+
img4=fDistancePlot(text_Party)
|
| 243 |
|
| 244 |
#img1=cv2.imread('/sentimentAnalysis.png')
|
| 245 |
#img2=cv2.imread('/wordcloud.png')
|
| 246 |
+
#img3=cv2.imread('/wordcloud.png')
|
| 247 |
+
#img4=cv2.imread('/distplot.png')
|
| 248 |
|
| 249 |
searchRes=concordance(text_Party,Search)
|
| 250 |
searChRes=clean(searchRes)
|
|
|
|
| 258 |
mfw=gr.outputs.Label(label="Most Relevant Topics")
|
| 259 |
# mfw2=gr.outputs.Image(label="Most Relevant Topics Plot")
|
| 260 |
plot1=gr.outputs. Image(label='Sentiment Analysis')
|
| 261 |
+
plot2=gr.outputs.Image(label='Subjectivity Analysis')
|
| 262 |
+
plot3=gr.outputs.Image(label='Word Cloud')
|
| 263 |
plot4=gr.outputs.Image(label='Frequency Distribution')
|
| 264 |
|
| 265 |
io=gr.Interface(fn=analysis, inputs=[filePdf,Search_txt], outputs=[text,mfw,plot1,plot2,plot3,plot4], title='Manifesto Analysis',examples=[['./Bjp_Manifesto_2019.pdf','india'],['./Aap_Manifesto_2019.pdf',],['./Congress_Manifesto_2019.pdf',]])
|
| 266 |
io.launch(debug=False,share=True)
|
| 267 |
|
| 268 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
|