Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -47,75 +47,6 @@ training.
|
|
| 47 |
3. 📈 Flexible scalability: Robust performance across diverse inference budgets on reasoning benchmarks like AIME and LiveCodeBench.
|
| 48 |
4. ⚙️ Better performance with fewer tokens: Our trained model generates outputs that are 30% shorter while maintaining (or even improving) accuracy.
|
| 49 |
|
| 50 |
-
<p align="center">
|
| 51 |
-
<img src="figs/aime.png" width="46%" />
|
| 52 |
-
<img src="figs/livecode.png" width="48%" />
|
| 53 |
-
</p>
|
| 54 |
-
|
| 55 |
-
<p align="center">
|
| 56 |
-
<img src="figs/codetable.png" width="90%" />
|
| 57 |
-
</p>
|
| 58 |
-
|
| 59 |
-
## Environment Setup
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
### Installation
|
| 63 |
-
```bash
|
| 64 |
-
# Installing Python 3.10 Environment.
|
| 65 |
-
conda create -n e1 python=3.10 -y
|
| 66 |
-
conda activate e1
|
| 67 |
-
|
| 68 |
-
# Installing dependencies.
|
| 69 |
-
cd Elastic-Reasoning
|
| 70 |
-
pip install -e ./verl
|
| 71 |
-
pip install -e .
|
| 72 |
-
```
|
| 73 |
-
### Data
|
| 74 |
-
Our raw training data is in `rllm/data/[train|test]/[code|math]/`, along with preprocessing scripts in `rllm/data/preprocess`. To convert the raw data into Parquet files for training, run:
|
| 75 |
-
|
| 76 |
-
```bash
|
| 77 |
-
# Download datasets from GDrive, populates rllm/data/[train|test]/[math|code]/*.json
|
| 78 |
-
python scripts/data/download_datasets.py
|
| 79 |
-
|
| 80 |
-
# Generate parquet files for Deepcoder/DeepscaleR in data/*.parquet
|
| 81 |
-
python scripts/data/[deepcoder|deepscaler]_dataset.py
|
| 82 |
-
```
|
| 83 |
-
## Training
|
| 84 |
-
```bash
|
| 85 |
-
export MODEL_PATH="agentica-org/DeepScaleR-1.5B-Preview"
|
| 86 |
-
./scripts/e1-math/e1_math_1.5b_1k_1k.sh --model $MODEL_PATH
|
| 87 |
-
```
|
| 88 |
-
|
| 89 |
-
## Evaluation
|
| 90 |
-
|
| 91 |
-
To run our evaluation scripts, run:
|
| 92 |
-
```bash
|
| 93 |
-
./scripts/eval/eval_model.sh --model [CHECKPOINT_PATH] --datasets [DATASET1] [DATASET2] --output-dir [OUTPUT_DIR] --n [N_PASSES] --tp [TENSOR_PARALLEL_SIZE] --e1-mode [SEPARATE_BUDGETING] --e1-thinking-length [THINKING_LENGTH] --e1-solution-length [SOLUTION_LENGTH]
|
| 94 |
-
```
|
| 95 |
-
|
| 96 |
-
### Example on MATH
|
| 97 |
-
```bash
|
| 98 |
-
./scripts/eval/eval_model.sh --model Salesforce/E1-Math-1.5B --datasets aime math amc minerva olympiad_bench --output-dir $HOME/E1-Math-1.5B --tp 1 --n 16 --e1-mode True --e1-thinking-length 1024 --e1-solution-length 1024
|
| 99 |
-
```
|
| 100 |
-
### Example on LiveCodeBench
|
| 101 |
-
```bash
|
| 102 |
-
./scripts/eval/eval_model.sh --model Salesforce/E1-Code-14B --datasets test_livecodebench --output-dir $HOME/E1-Code-14B --tp 4 --e1-mode True --e1-thinking-length 1024 --e1-solution-length 1024
|
| 103 |
-
```
|
| 104 |
-
|
| 105 |
-
### Example on Codeforces
|
| 106 |
-
```bash
|
| 107 |
-
./scripts/eval/eval_model.sh --model Salesforce/E1-Code-14B --datasets test_codeforces --output-dir $HOME/DeepCoder-14B-Preview --tp 4 --n 8 --e1-mode True --e1-thinking-length 1024 --e1-solution-length 1024
|
| 108 |
-
```
|
| 109 |
-
```bash
|
| 110 |
-
python scripts/deepcoder/benchmark/cf_elo_calc.py --results_path [RESULTS_JSON_PATH] --pass_n 8
|
| 111 |
-
```
|
| 112 |
-
|
| 113 |
-
### Unconstrained evaluation
|
| 114 |
-
set `--e1-mode False` and `--max-length [Maxmum token length, e.g. 32768]`
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
## Acknowledgement
|
| 118 |
-
We greatly thanks [rllm](https://github.com/agentica-project/rllm) and [verl](https://github.com/volcengine/verl) for providing the awesome codebase!
|
| 119 |
|
| 120 |
## Citation
|
| 121 |
|
|
|
|
| 47 |
3. 📈 Flexible scalability: Robust performance across diverse inference budgets on reasoning benchmarks like AIME and LiveCodeBench.
|
| 48 |
4. ⚙️ Better performance with fewer tokens: Our trained model generates outputs that are 30% shorter while maintaining (or even improving) accuracy.
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
## Citation
|
| 52 |
|