Spaces:
Running
Running
add filter: Accuracy Threshold
Browse files
app.py
CHANGED
|
@@ -34,6 +34,7 @@ def update_table(
|
|
| 34 |
llm_query: list,
|
| 35 |
llm_provider_query: list,
|
| 36 |
accuracy_method_query: str,
|
|
|
|
| 37 |
use_case_area_query: list,
|
| 38 |
use_case_query: list,
|
| 39 |
use_case_type_query: list,
|
|
@@ -48,6 +49,7 @@ def update_table(
|
|
| 48 |
filtered_df = filter_llm_func(hidden_df, llm_query)
|
| 49 |
filtered_df = filter_llm_provider_func(filtered_df, llm_provider_query)
|
| 50 |
filtered_df = filter_accuracy_method_func(filtered_df, accuracy_method_query)
|
|
|
|
| 51 |
|
| 52 |
filtered_df["Use Case Area"] = filtered_df["Use Case Name"].apply(lambda x: x.split(": ")[0])
|
| 53 |
filtered_df = filter_use_case_area_func(filtered_df, use_case_area_query)
|
|
@@ -63,16 +65,22 @@ def init_leaderboard_df(
|
|
| 63 |
llm_query: list,
|
| 64 |
llm_provider_query: list,
|
| 65 |
accuracy_method_query: str,
|
|
|
|
| 66 |
use_case_area_query: list,
|
| 67 |
use_case_query: list,
|
| 68 |
use_case_type_query: list,
|
| 69 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
return update_table(
|
| 71 |
leaderboard_df,
|
| 72 |
columns,
|
| 73 |
llm_query,
|
| 74 |
llm_provider_query,
|
| 75 |
accuracy_method_query,
|
|
|
|
| 76 |
use_case_area_query,
|
| 77 |
use_case_query,
|
| 78 |
use_case_type_query,
|
|
@@ -83,6 +91,11 @@ def filter_accuracy_method_func(df: pd.DataFrame, accuracy_method_query: str) ->
|
|
| 83 |
return df[df["Accuracy Method"] == accuracy_method_query]
|
| 84 |
|
| 85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
def filter_use_case_area_func(df: pd.DataFrame, use_case_area_query: list) -> pd.DataFrame:
|
| 87 |
return df[
|
| 88 |
df["Use Case Area"].apply(
|
|
@@ -108,10 +121,6 @@ def filter_llm_provider_func(df: pd.DataFrame, llm_provider_query: list) -> pd.D
|
|
| 108 |
return df[df["LLM Provider"].isin(llm_provider_query)]
|
| 109 |
|
| 110 |
|
| 111 |
-
# def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
| 112 |
-
# return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
|
| 113 |
-
|
| 114 |
-
|
| 115 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
| 116 |
always_here_cols = [
|
| 117 |
AutoEvalColumn.model.name,
|
|
@@ -298,6 +307,7 @@ with demo:
|
|
| 298 |
filter_llm.value,
|
| 299 |
filter_llm_provider.value,
|
| 300 |
filter_accuracy_method.value,
|
|
|
|
| 301 |
filter_use_case_area.value,
|
| 302 |
filter_use_case.value,
|
| 303 |
filter_use_case_type.value,
|
|
@@ -334,6 +344,7 @@ with demo:
|
|
| 334 |
filter_llm,
|
| 335 |
filter_llm_provider,
|
| 336 |
filter_accuracy_method,
|
|
|
|
| 337 |
filter_use_case_area,
|
| 338 |
filter_use_case,
|
| 339 |
filter_use_case_type,
|
|
@@ -350,6 +361,7 @@ with demo:
|
|
| 350 |
filter_llm,
|
| 351 |
filter_llm_provider,
|
| 352 |
filter_accuracy_method,
|
|
|
|
| 353 |
filter_use_case_area,
|
| 354 |
filter_use_case,
|
| 355 |
filter_use_case_type,
|
|
|
|
| 34 |
llm_query: list,
|
| 35 |
llm_provider_query: list,
|
| 36 |
accuracy_method_query: str,
|
| 37 |
+
accuracy_threshold_query: str,
|
| 38 |
use_case_area_query: list,
|
| 39 |
use_case_query: list,
|
| 40 |
use_case_type_query: list,
|
|
|
|
| 49 |
filtered_df = filter_llm_func(hidden_df, llm_query)
|
| 50 |
filtered_df = filter_llm_provider_func(filtered_df, llm_provider_query)
|
| 51 |
filtered_df = filter_accuracy_method_func(filtered_df, accuracy_method_query)
|
| 52 |
+
filtered_df = filter_accuracy_threshold_func(filtered_df, accuracy_threshold_query)
|
| 53 |
|
| 54 |
filtered_df["Use Case Area"] = filtered_df["Use Case Name"].apply(lambda x: x.split(": ")[0])
|
| 55 |
filtered_df = filter_use_case_area_func(filtered_df, use_case_area_query)
|
|
|
|
| 65 |
llm_query: list,
|
| 66 |
llm_provider_query: list,
|
| 67 |
accuracy_method_query: str,
|
| 68 |
+
accuracy_threshold_query: str,
|
| 69 |
use_case_area_query: list,
|
| 70 |
use_case_query: list,
|
| 71 |
use_case_type_query: list,
|
| 72 |
):
|
| 73 |
+
|
| 74 |
+
# Applying the style function
|
| 75 |
+
# df = leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value]
|
| 76 |
+
# return df.style.apply(highlight_cols, axis=None)
|
| 77 |
return update_table(
|
| 78 |
leaderboard_df,
|
| 79 |
columns,
|
| 80 |
llm_query,
|
| 81 |
llm_provider_query,
|
| 82 |
accuracy_method_query,
|
| 83 |
+
accuracy_threshold_query,
|
| 84 |
use_case_area_query,
|
| 85 |
use_case_query,
|
| 86 |
use_case_type_query,
|
|
|
|
| 91 |
return df[df["Accuracy Method"] == accuracy_method_query]
|
| 92 |
|
| 93 |
|
| 94 |
+
def filter_accuracy_threshold_func(df: pd.DataFrame, accuracy_threshold_query: str) -> pd.DataFrame:
|
| 95 |
+
accuracy_cols = ["Instruction Following", "Conciseness", "Completeness", "Accuracy"]
|
| 96 |
+
return df[(df.loc[:, accuracy_cols] >= float(accuracy_threshold_query)).all(axis=1)]
|
| 97 |
+
|
| 98 |
+
|
| 99 |
def filter_use_case_area_func(df: pd.DataFrame, use_case_area_query: list) -> pd.DataFrame:
|
| 100 |
return df[
|
| 101 |
df["Use Case Area"].apply(
|
|
|
|
| 121 |
return df[df["LLM Provider"].isin(llm_provider_query)]
|
| 122 |
|
| 123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
| 125 |
always_here_cols = [
|
| 126 |
AutoEvalColumn.model.name,
|
|
|
|
| 307 |
filter_llm.value,
|
| 308 |
filter_llm_provider.value,
|
| 309 |
filter_accuracy_method.value,
|
| 310 |
+
filter_accuracy_threshold.value,
|
| 311 |
filter_use_case_area.value,
|
| 312 |
filter_use_case.value,
|
| 313 |
filter_use_case_type.value,
|
|
|
|
| 344 |
filter_llm,
|
| 345 |
filter_llm_provider,
|
| 346 |
filter_accuracy_method,
|
| 347 |
+
filter_accuracy_threshold,
|
| 348 |
filter_use_case_area,
|
| 349 |
filter_use_case,
|
| 350 |
filter_use_case_type,
|
|
|
|
| 361 |
filter_llm,
|
| 362 |
filter_llm_provider,
|
| 363 |
filter_accuracy_method,
|
| 364 |
+
filter_accuracy_threshold,
|
| 365 |
filter_use_case_area,
|
| 366 |
filter_use_case,
|
| 367 |
filter_use_case_type,
|