Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,91 +1,69 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import openai
|
| 3 |
import gradio as gr
|
| 4 |
-
from
|
| 5 |
-
import
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
"""
|
| 21 |
try:
|
| 22 |
-
# Convert
|
| 23 |
-
|
| 24 |
-
image.save(buffered, format="JPEG")
|
| 25 |
-
img_bytes = buffered.getvalue()
|
| 26 |
-
|
| 27 |
-
# Encode image to base64
|
| 28 |
-
img_base64 = base64.b64encode(img_bytes).decode('utf-8')
|
| 29 |
-
|
| 30 |
-
# Create a system prompt to guide the model
|
| 31 |
-
system_prompt = "You are an agricultural expert specializing in plant diseases."
|
| 32 |
-
|
| 33 |
-
# Step 1: Detect Disease
|
| 34 |
-
disease_prompt = (
|
| 35 |
-
"Analyze the following image of a plant leaf and identify any diseases present. "
|
| 36 |
-
"Provide only the name of the disease without additional explanation.\n\n"
|
| 37 |
-
"Image (base64 encoded): {}\n\nDisease:".format(img_base64)
|
| 38 |
-
)
|
| 39 |
-
|
| 40 |
-
# Send the image to OpenAI's ChatCompletion API for disease detection
|
| 41 |
-
response = openai.ChatCompletion.create(
|
| 42 |
-
model="gpt-4-vision", # Assuming GPT-4 with vision capabilities
|
| 43 |
-
messages=[
|
| 44 |
-
{"role": "system", "content": system_prompt},
|
| 45 |
-
{"role": "user", "content": disease_prompt}
|
| 46 |
-
],
|
| 47 |
-
temperature=0
|
| 48 |
-
)
|
| 49 |
-
|
| 50 |
-
disease = response.choices[0].message['content'].strip()
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
# Step 2: Get Remedies for the Detected Disease
|
| 56 |
-
remedy_prompt = (
|
| 57 |
-
"Provide detailed remedies and treatment options for the following plant leaf disease: {}. "
|
| 58 |
-
"Include both chemical and organic treatment methods if applicable.".format(disease)
|
| 59 |
-
)
|
| 60 |
-
|
| 61 |
-
remedy_response = openai.ChatCompletion.create(
|
| 62 |
-
model="gpt-4",
|
| 63 |
messages=[
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
],
|
| 67 |
-
|
| 68 |
-
max_tokens=500
|
| 69 |
)
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
return disease, remedies
|
| 74 |
|
| 75 |
except Exception as e:
|
| 76 |
-
return
|
| 77 |
|
| 78 |
# Define the Gradio interface
|
| 79 |
-
|
| 80 |
-
fn=
|
| 81 |
-
inputs=gr.Image(type="
|
| 82 |
-
outputs=
|
| 83 |
-
gr.Textbox(label="Detected Disease"),
|
| 84 |
-
gr.Textbox(label="Remedies")
|
| 85 |
-
],
|
| 86 |
title="Leaf Disease Detector",
|
| 87 |
-
description="Upload an image of a leaf, and
|
| 88 |
)
|
| 89 |
|
|
|
|
| 90 |
if __name__ == "__main__":
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from azure.ai.inference import ChatCompletionsClient
|
| 3 |
+
from azure.ai.inference.models import (
|
| 4 |
+
SystemMessage,
|
| 5 |
+
UserMessage,
|
| 6 |
+
TextContentItem,
|
| 7 |
+
ImageContentItem,
|
| 8 |
+
ImageUrl,
|
| 9 |
+
ImageDetailLevel,
|
| 10 |
+
)
|
| 11 |
+
from azure.core.credentials import AzureKeyCredential
|
| 12 |
|
| 13 |
+
# Azure API credentials
|
| 14 |
+
token = "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"
|
| 15 |
+
endpoint = "https://models.inference.ai.azure.com"
|
| 16 |
+
model_name = "Llama-3.2-90B-Vision-Instruct"
|
| 17 |
|
| 18 |
+
# Initialize the ChatCompletionsClient
|
| 19 |
+
client = ChatCompletionsClient(
|
| 20 |
+
endpoint=endpoint,
|
| 21 |
+
credential=AzureKeyCredential(token),
|
| 22 |
+
)
|
| 23 |
|
| 24 |
+
# Define the function to handle the image and get predictions
|
| 25 |
+
def analyze_leaf_disease(image):
|
|
|
|
| 26 |
try:
|
| 27 |
+
# Convert the uploaded image to a compatible format (e.g., save it locally)
|
| 28 |
+
image.save("uploaded_image.jpg")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
# Prepare and send the request to the Azure API
|
| 31 |
+
response = client.complete(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
messages=[
|
| 33 |
+
SystemMessage(
|
| 34 |
+
content="You are a helpful assistant that describes leaf disease in detail."
|
| 35 |
+
),
|
| 36 |
+
UserMessage(
|
| 37 |
+
content=[
|
| 38 |
+
TextContentItem(text="What's the leaf disease in this image?"),
|
| 39 |
+
ImageContentItem(
|
| 40 |
+
image_url=ImageUrl.load(
|
| 41 |
+
image_file="uploaded_image.jpg",
|
| 42 |
+
image_format="jpg",
|
| 43 |
+
detail=ImageDetailLevel.LOW,
|
| 44 |
+
)
|
| 45 |
+
),
|
| 46 |
+
],
|
| 47 |
+
),
|
| 48 |
],
|
| 49 |
+
model=model_name,
|
|
|
|
| 50 |
)
|
| 51 |
|
| 52 |
+
# Extract and return the response content
|
| 53 |
+
return response.choices[0].message.content
|
|
|
|
| 54 |
|
| 55 |
except Exception as e:
|
| 56 |
+
return f"An error occurred: {e}"
|
| 57 |
|
| 58 |
# Define the Gradio interface
|
| 59 |
+
interface = gr.Interface(
|
| 60 |
+
fn=analyze_leaf_disease,
|
| 61 |
+
inputs=gr.Image(type="file", label="Upload an Image of a Leaf"),
|
| 62 |
+
outputs="text",
|
|
|
|
|
|
|
|
|
|
| 63 |
title="Leaf Disease Detector",
|
| 64 |
+
description="Upload an image of a leaf, and this tool will identify the disease affecting it.",
|
| 65 |
)
|
| 66 |
|
| 67 |
+
# Launch the interface
|
| 68 |
if __name__ == "__main__":
|
| 69 |
+
interface.launch()
|