Spaces:
Sleeping
Sleeping
Update custom_models/groundedness_checker/evaluate_groundedness_model.py
Browse files
custom_models/groundedness_checker/evaluate_groundedness_model.py
CHANGED
|
@@ -1,84 +1,83 @@
|
|
| 1 |
-
|
| 2 |
-
from llmgaurdrails.custom_models.groundedness_checker.pdf_data_chunker import process_pdf
|
| 3 |
-
import pandas as pd
|
| 4 |
-
from llmgaurdrails.custom_models.groundedness_checker.llm_based_qa_generator import LLMBasedQAGenerator
|
| 5 |
-
import pickle
|
| 6 |
-
from llmgaurdrails.model_inference.groundedness_checker import GroundednessChecker
|
| 7 |
-
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
def get_eval_data(eval_pdf_paths:list,
|
| 11 |
-
regenerate=False,
|
| 12 |
-
path_to_save='eval_dataset'):
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
if regenerate:
|
| 16 |
-
print("regenerating")
|
| 17 |
-
|
| 18 |
-
# pdf_path = # Replace with your PDF
|
| 19 |
-
pdf_paths = eval_pdf_paths
|
| 20 |
-
|
| 21 |
-
all_chunks = []
|
| 22 |
-
|
| 23 |
-
for path in pdf_paths:
|
| 24 |
-
chunks = process_pdf(path)
|
| 25 |
-
all_chunks.append(chunks)
|
| 26 |
-
|
| 27 |
-
chunks_flattened = [x for xs in all_chunks for x in xs]
|
| 28 |
-
|
| 29 |
-
qa_generator = LLMBasedQAGenerator()
|
| 30 |
-
|
| 31 |
-
dataset = qa_generator.generate_dataset(chunks_flattened ,persist_dataset=True,presisted_file_path=path_to_save)
|
| 32 |
-
|
| 33 |
-
return dataset
|
| 34 |
-
else:
|
| 35 |
-
if path_to_save:
|
| 36 |
-
dataset = pickle.load(open(path_to_save,'rb'))
|
| 37 |
-
return dataset
|
| 38 |
-
else:
|
| 39 |
-
raise ValueError("Please specify the path where the dataset was previously saved in the parameter 'path_to_save' ")
|
| 40 |
-
|
| 41 |
-
def evaluate(dataset):
|
| 42 |
-
groundedness_checker = GroundednessChecker()
|
| 43 |
-
eval_df = pd.DataFrame(data= dataset)
|
| 44 |
-
|
| 45 |
-
predictions = []
|
| 46 |
-
confidence_scores = []
|
| 47 |
-
|
| 48 |
-
for i,row in eval_df.iterrows():
|
| 49 |
-
groundedness_result = groundedness_checker.check(
|
| 50 |
-
question=row['question'],
|
| 51 |
-
answer=row['answer'],
|
| 52 |
-
context=row['context'])
|
| 53 |
-
|
| 54 |
-
predictions.append(groundedness_result['is_grounded'])
|
| 55 |
-
confidence_scores.append(groundedness_result['confidence'])
|
| 56 |
-
|
| 57 |
-
eval_df['predicted'] = predictions
|
| 58 |
-
eval_df['confidence'] = confidence_scores
|
| 59 |
-
|
| 60 |
-
accuracy = accuracy_score(eval_df['label'], eval_df['predicted'])
|
| 61 |
-
precision = precision_score(eval_df['label'], eval_df['predicted'])
|
| 62 |
-
recall = recall_score(eval_df['label'], eval_df['predicted'])
|
| 63 |
-
f1 = f1_score(eval_df['label'], eval_df['predicted'])
|
| 64 |
-
conf_matrix = confusion_matrix(eval_df['label'], eval_df['predicted'])
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
print("
|
| 68 |
-
print("
|
| 69 |
-
print("
|
| 70 |
-
print("
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
dataset
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
|
|
|
|
| 1 |
+
|
| 2 |
+
from llmgaurdrails.custom_models.groundedness_checker.pdf_data_chunker import process_pdf
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from llmgaurdrails.custom_models.groundedness_checker.llm_based_qa_generator import LLMBasedQAGenerator
|
| 5 |
+
import pickle
|
| 6 |
+
from llmgaurdrails.model_inference.groundedness_checker import GroundednessChecker
|
| 7 |
+
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def get_eval_data(eval_pdf_paths:list,
|
| 11 |
+
regenerate=False,
|
| 12 |
+
path_to_save='eval_dataset'):
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
if regenerate:
|
| 16 |
+
print("regenerating")
|
| 17 |
+
|
| 18 |
+
# pdf_path = # Replace with your PDF
|
| 19 |
+
pdf_paths = eval_pdf_paths
|
| 20 |
+
|
| 21 |
+
all_chunks = []
|
| 22 |
+
|
| 23 |
+
for path in pdf_paths:
|
| 24 |
+
chunks = process_pdf(path)
|
| 25 |
+
all_chunks.append(chunks)
|
| 26 |
+
|
| 27 |
+
chunks_flattened = [x for xs in all_chunks for x in xs]
|
| 28 |
+
|
| 29 |
+
qa_generator = LLMBasedQAGenerator()
|
| 30 |
+
|
| 31 |
+
dataset = qa_generator.generate_dataset(chunks_flattened ,persist_dataset=True,presisted_file_path=path_to_save)
|
| 32 |
+
|
| 33 |
+
return dataset
|
| 34 |
+
else:
|
| 35 |
+
if path_to_save:
|
| 36 |
+
dataset = pickle.load(open(path_to_save,'rb'))
|
| 37 |
+
return dataset
|
| 38 |
+
else:
|
| 39 |
+
raise ValueError("Please specify the path where the dataset was previously saved in the parameter 'path_to_save' ")
|
| 40 |
+
|
| 41 |
+
def evaluate(dataset):
|
| 42 |
+
groundedness_checker = GroundednessChecker()
|
| 43 |
+
eval_df = pd.DataFrame(data= dataset)
|
| 44 |
+
|
| 45 |
+
predictions = []
|
| 46 |
+
confidence_scores = []
|
| 47 |
+
|
| 48 |
+
for i,row in eval_df.iterrows():
|
| 49 |
+
groundedness_result = groundedness_checker.check(
|
| 50 |
+
question=row['question'],
|
| 51 |
+
answer=row['answer'],
|
| 52 |
+
context=row['context'])
|
| 53 |
+
|
| 54 |
+
predictions.append(groundedness_result['is_grounded'])
|
| 55 |
+
confidence_scores.append(groundedness_result['confidence'])
|
| 56 |
+
|
| 57 |
+
eval_df['predicted'] = predictions
|
| 58 |
+
eval_df['confidence'] = confidence_scores
|
| 59 |
+
|
| 60 |
+
accuracy = accuracy_score(eval_df['label'], eval_df['predicted'])
|
| 61 |
+
precision = precision_score(eval_df['label'], eval_df['predicted'])
|
| 62 |
+
recall = recall_score(eval_df['label'], eval_df['predicted'])
|
| 63 |
+
f1 = f1_score(eval_df['label'], eval_df['predicted'])
|
| 64 |
+
conf_matrix = confusion_matrix(eval_df['label'], eval_df['predicted'])
|
| 65 |
+
|
| 66 |
+
print("Accuracy:", accuracy)
|
| 67 |
+
print("Precision:", precision)
|
| 68 |
+
print("Recall:", recall)
|
| 69 |
+
print("F1 Score:", f1)
|
| 70 |
+
print("Confusion Matrix:\n", conf_matrix)
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
# Usage
|
| 74 |
+
if __name__ == "__main__":
|
| 75 |
+
dataset = get_eval_data(eval_pdf_paths=[["D:\Sasidhar\Projects\llm_gaurdrails\llmgaurdrails\data\CreditCard.pdf"]])
|
| 76 |
+
evaluate(dataset)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
|
|
|
|
| 83 |
|