Spaces:
Sleeping
Sleeping
File size: 2,854 Bytes
cf13548 a97991a cf13548 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
import torch
from torchvision import transforms
from PIL import Image
from fpdf import FPDF
from datetime import datetime
import gradio as gr
from model import get_model
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MODEL_PATH = "ecg_multiclass.pth"
IMG_SIZE = (224, 224)
DESCRIPTIONS = {
"Normal": "This ECG indicates a normal heart rhythm with no abnormalities detected.",
"Myocardial_Infarction": "This ECG suggests a myocardial infarction (heart attack). Immediate medical attention is recommended.",
"Abnormal_heartbeat": "This ECG shows an abnormal heartbeat pattern indicating possible arrhythmia or heart irregularities."
}
# Load model checkpoint
checkpoint = torch.load(MODEL_PATH, map_location=DEVICE)
classes = checkpoint["classes"]
num_classes = len(classes)
model = get_model(num_classes=num_classes,pretrained=False)
model.load_state_dict(checkpoint["model_state"])
model.eval()
transform = transforms.Compose([
transforms.Grayscale(),
transforms.Resize(IMG_SIZE),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
])
def generate_report(image):
if image is None:
return None, "Please upload an image."
# Convert
img = Image.fromarray(image).convert("L")
input_tensor = transform(img).unsqueeze(0).to(DEVICE)
# Predict
with torch.no_grad():
output = model(input_tensor)
probabilities = torch.softmax(output, dim=1)[0]
pred_index = torch.argmax(probabilities).item()
pred_class = classes[pred_index]
# Prepare probability texts
prob_text = ""
for i, cls in enumerate(classes):
prob_text += f"{cls}: {probabilities[i] * 100:.2f}%\n"
# Generate PDF
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
pdf_path = f"ecg_report_{timestamp}.pdf"
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", "B", 16)
pdf.cell(0, 10, "ECG Prediction Report", ln=True, align="C")
pdf.ln(10)
pdf.set_font("Arial", "", 12)
pdf.multi_cell(0, 10, f"Predicted Class: {pred_class}\n")
pdf.multi_cell(0, 8, f"Probabilities:\n{prob_text}")
pdf.multi_cell(0, 8, f"Description:\n{DESCRIPTIONS.get(pred_class, 'No description.')}")
pdf.ln(10)
# Save uploaded image temporarily for embedding
img_path = f"temp_img_{timestamp}.png"
img.save(img_path)
pdf.image(img_path, x=30, w=150)
pdf.output(pdf_path)
return pdf_path, f"Prediction complete: {pred_class}"
# Gradio UI
interface = gr.Interface(
fn=generate_report,
inputs=gr.Image(type="numpy", label="Upload ECG Image"),
outputs=[
gr.File(label="Download PDF Report"),
gr.Textbox(label="Status")
],
title="ECG Classification & PDF Report Generator",
description="Upload an ECG image to get an AI-generated PDF report."
)
interface.launch()
|