Sayed223 commited on
Commit
3963964
·
verified ·
1 Parent(s): 302f7b0

Update model.py

Browse files
Files changed (1) hide show
  1. model.py +17 -3
model.py CHANGED
@@ -1,4 +1,3 @@
1
- # model.py
2
  import torch.nn as nn
3
  from torchvision.models import resnet18
4
 
@@ -12,7 +11,22 @@ def get_model(num_classes, pretrained=True):
12
  model.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
13
 
14
  # Change the output layer for our number of classes
15
- model.fc = nn
16
- Linear(model.fc.in_features, num_classes)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  return model
 
 
1
  import torch.nn as nn
2
  from torchvision.models import resnet18
3
 
 
11
  model.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
12
 
13
  # Change the output layer for our number of classes
14
+ model.fc = nn.Linear(model.fc.in_features, num_classes)
15
+
16
+ return model
17
+ import torch.nn as nn
18
+ from torchvision.models import resnet18
19
+
20
+ def get_model(num_classes, pretrained=True):
21
+ """
22
+ Returns a CNN model adapted for grayscale ECG images
23
+ """
24
+ model = resnet18(pretrained=pretrained)
25
+
26
+ # Change first layer to accept 1-channel input (grayscale)
27
+ model.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
28
+
29
+ # Change the output layer for our number of classes
30
+ model.fc = nn.Linear(model.fc.in_features, num_classes)
31
 
32
  return model