Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- README.md +8 -12
- app.py +94 -0
- ecg_multiclass.pth +3 -0
- model.py +17 -0
- requirements.txt +5 -0
README.md
CHANGED
|
@@ -1,12 +1,8 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
pinned: false
|
| 10 |
-
---
|
| 11 |
-
|
| 12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
+
# ECG Classification AI
|
| 2 |
+
|
| 3 |
+
Upload an ECG image and receive:
|
| 4 |
+
- Predicted class
|
| 5 |
+
- Probability scores
|
| 6 |
+
- Automatically generated PDF report
|
| 7 |
+
|
| 8 |
+
Model: Custom CNN (3-class)
|
|
|
|
|
|
|
|
|
|
|
|
app.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torchvision import transforms
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from fpdf import FPDF
|
| 5 |
+
from datetime import datetime
|
| 6 |
+
import gradio as gr
|
| 7 |
+
from model import get_model
|
| 8 |
+
|
| 9 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 10 |
+
MODEL_PATH = "ecg_multiclass.pth"
|
| 11 |
+
IMG_SIZE = (224, 224)
|
| 12 |
+
|
| 13 |
+
DESCRIPTIONS = {
|
| 14 |
+
"Normal": "This ECG indicates a normal heart rhythm with no abnormalities detected.",
|
| 15 |
+
"Myocardial_Infarction": "This ECG suggests a myocardial infarction (heart attack). Immediate medical attention is recommended.",
|
| 16 |
+
"Abnormal_heartbeat": "This ECG shows an abnormal heartbeat pattern indicating possible arrhythmia or heart irregularities."
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
# Load model checkpoint
|
| 20 |
+
checkpoint = torch.load(MODEL_PATH, map_location=DEVICE)
|
| 21 |
+
classes = checkpoint["classes"]
|
| 22 |
+
num_classes = len(classes)
|
| 23 |
+
|
| 24 |
+
model = get_model(num_classes=num_classes, weights=None).to(DEVICE)
|
| 25 |
+
model.load_state_dict(checkpoint["model_state"])
|
| 26 |
+
model.eval()
|
| 27 |
+
|
| 28 |
+
transform = transforms.Compose([
|
| 29 |
+
transforms.Grayscale(),
|
| 30 |
+
transforms.Resize(IMG_SIZE),
|
| 31 |
+
transforms.ToTensor(),
|
| 32 |
+
transforms.Normalize([0.5], [0.5])
|
| 33 |
+
])
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def generate_report(image):
|
| 37 |
+
if image is None:
|
| 38 |
+
return None, "Please upload an image."
|
| 39 |
+
|
| 40 |
+
# Convert
|
| 41 |
+
img = Image.fromarray(image).convert("L")
|
| 42 |
+
input_tensor = transform(img).unsqueeze(0).to(DEVICE)
|
| 43 |
+
|
| 44 |
+
# Predict
|
| 45 |
+
with torch.no_grad():
|
| 46 |
+
output = model(input_tensor)
|
| 47 |
+
probabilities = torch.softmax(output, dim=1)[0]
|
| 48 |
+
pred_index = torch.argmax(probabilities).item()
|
| 49 |
+
pred_class = classes[pred_index]
|
| 50 |
+
|
| 51 |
+
# Prepare probability text
|
| 52 |
+
prob_text = ""
|
| 53 |
+
for i, cls in enumerate(classes):
|
| 54 |
+
prob_text += f"{cls}: {probabilities[i] * 100:.2f}%\n"
|
| 55 |
+
|
| 56 |
+
# Generate PDF
|
| 57 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 58 |
+
pdf_path = f"ecg_report_{timestamp}.pdf"
|
| 59 |
+
|
| 60 |
+
pdf = FPDF()
|
| 61 |
+
pdf.add_page()
|
| 62 |
+
pdf.set_font("Arial", "B", 16)
|
| 63 |
+
pdf.cell(0, 10, "ECG Prediction Report", ln=True, align="C")
|
| 64 |
+
pdf.ln(10)
|
| 65 |
+
|
| 66 |
+
pdf.set_font("Arial", "", 12)
|
| 67 |
+
pdf.multi_cell(0, 10, f"Predicted Class: {pred_class}\n")
|
| 68 |
+
pdf.multi_cell(0, 8, f"Probabilities:\n{prob_text}")
|
| 69 |
+
pdf.multi_cell(0, 8, f"Description:\n{DESCRIPTIONS.get(pred_class, 'No description.')}")
|
| 70 |
+
pdf.ln(10)
|
| 71 |
+
|
| 72 |
+
# Save uploaded image temporarily for embedding
|
| 73 |
+
img_path = f"temp_img_{timestamp}.png"
|
| 74 |
+
img.save(img_path)
|
| 75 |
+
|
| 76 |
+
pdf.image(img_path, x=30, w=150)
|
| 77 |
+
pdf.output(pdf_path)
|
| 78 |
+
|
| 79 |
+
return pdf_path, f"Prediction complete: {pred_class}"
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
# Gradio UI
|
| 83 |
+
interface = gr.Interface(
|
| 84 |
+
fn=generate_report,
|
| 85 |
+
inputs=gr.Image(type="numpy", label="Upload ECG Image"),
|
| 86 |
+
outputs=[
|
| 87 |
+
gr.File(label="Download PDF Report"),
|
| 88 |
+
gr.Textbox(label="Status")
|
| 89 |
+
],
|
| 90 |
+
title="ECG Classification & PDF Report Generator",
|
| 91 |
+
description="Upload an ECG image to get an AI-generated PDF report."
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
interface.launch()
|
ecg_multiclass.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9bf90aa76d576a335b5c6c3c3f49c374d6d5ba6775c5db80678e63612a868739
|
| 3 |
+
size 44765643
|
model.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# model.py
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from torchvision.models import resnet18
|
| 4 |
+
|
| 5 |
+
def get_model(num_classes, pretrained=True):
|
| 6 |
+
"""
|
| 7 |
+
Returns a CNN model adapted for grayscale ECG images
|
| 8 |
+
"""
|
| 9 |
+
model = resnet18(pretrained=pretrained)
|
| 10 |
+
|
| 11 |
+
# Change first layer to accept 1-channel input (grayscale)
|
| 12 |
+
model.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
|
| 13 |
+
|
| 14 |
+
# Change the output layer for our number of classes
|
| 15 |
+
model.fc = nn.Linear(model.fc.in_features, num_classes)
|
| 16 |
+
|
| 17 |
+
return model
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
torchvision
|
| 3 |
+
pillow
|
| 4 |
+
fpdf
|
| 5 |
+
gradio
|