Spaces:
Sleeping
Sleeping
File size: 9,528 Bytes
7b7db64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import gradio as gr
import numpy as np
import librosa
import time
from typing import Dict, Any, Optional, Tuple
from .gpt import gen_llm_response
class StreamingManager:
"""Manages audio file streaming functionality for testing purposes"""
def __init__(self, processor):
"""Initialize streaming manager with audio processor"""
self.processor = processor
self.streaming_data = {
'active': False,
'audio_data': None,
'sr': None,
'chunk_index': 0,
'total_chunks': 0,
'chunk_duration': 0.5,
'chunk_size': 0
}
# Store original processor settings for restoration
self.original_min_process_length = processor.min_process_length
self.original_process_interval = processor.process_interval
def start_file_streaming_test(self, audio_file: str) -> Tuple[str, str, str]:
"""Start streaming an audio file in chunks"""
if audio_file is None:
return "Please upload an audio file first", "", ""
try:
# Clear buffer and reset state
self.processor.clear_buffer()
# Adjust processor settings for streaming test
self.processor.min_process_length = 0.5 * self.processor.sample_rate # Process every 0.5 seconds
self.processor.process_interval = 0.3 # Check for processing every 0.3 seconds
# Load audio file
audio_data, sr = librosa.load(audio_file, sr=None)
# Calculate chunks
chunk_duration = 0.5 # 0.5 second chunks
chunk_size = int(chunk_duration * sr)
total_chunks = len(audio_data) // chunk_size + (1 if len(audio_data) % chunk_size > 0 else 0)
# Store streaming data
self.streaming_data.update({
'active': True,
'audio_data': audio_data,
'sr': sr,
'chunk_index': 0,
'total_chunks': total_chunks,
'chunk_duration': chunk_duration,
'chunk_size': chunk_size
})
#print(f"🎵 Starting stream: {len(audio_data)/sr:.1f}s audio, {total_chunks} chunks of {chunk_duration}s each")
return f"Started streaming {len(audio_data)/sr:.1f}s audio file in {total_chunks} chunks", "", ""
except Exception as e:
return f"Error loading audio file: {e}", "", ""
def stop_file_streaming_test(self) -> Tuple[str, str, str]:
"""Stop streaming test"""
self.streaming_data['active'] = False
# Restore original processor settings
self.processor.min_process_length = self.original_min_process_length
self.processor.process_interval = self.original_process_interval
# Force complete processing of all remaining audio
final_transcription = self.processor.force_complete_processing()
llm_response = ""
if final_transcription and len(final_transcription) > 0:
llm_response = gen_llm_response(final_transcription)
return "Streaming stopped", final_transcription, llm_response
def update_streaming_test(self) -> Tuple[str, str, str]:
"""Update function called periodically during streaming"""
if not self.streaming_data['active']:
current_transcription = self.processor.get_transcription()
return "Not streaming", current_transcription, ""
try:
# Check if we've processed all chunks
if self.streaming_data['chunk_index'] >= self.streaming_data['total_chunks']:
# Finished streaming
self.streaming_data['active'] = False
# Force complete processing of all remaining audio
final_transcription = self.processor.force_complete_processing()
# Restore settings after processing is complete
self.processor.min_process_length = self.original_min_process_length
self.processor.process_interval = self.original_process_interval
# Send final transcription to LLM and get response
llm_response = ""
if final_transcription and len(final_transcription) > 0:
llm_response = gen_llm_response(final_transcription)
return f"Streaming complete! Processed {self.streaming_data['total_chunks']} chunks", str(final_transcription), llm_response
# Get current chunk info
chunk_size = self.streaming_data['chunk_size']
current_chunk = self.streaming_data['chunk_index']
start_idx = current_chunk * chunk_size
end_idx = min((current_chunk + 1) * chunk_size, len(self.streaming_data['audio_data']))
# Extract and process chunk
chunk = self.streaming_data['audio_data'][start_idx:end_idx]
#print(f"Processing chunk {current_chunk + 1}/{self.streaming_data['total_chunks']}: samples {start_idx}-{end_idx} ({len(chunk)} samples)")
# Add chunk to processor
buffer_size = self.processor.add_audio(chunk, self.streaming_data['sr'])
# Wait for any pending processing to complete before getting transcription
self.processor.wait_for_processing_complete(2.0)
# Get current transcription
transcription = self.processor.get_transcription()
# Send transcription to LLM and get response (for real-time updates)
llm_response = ""
if transcription and len(transcription) > 0:
llm_response = gen_llm_response(transcription)
# Update status
buffer_seconds = buffer_size / self.processor.sample_rate
status = f"Chunk {current_chunk+1}/{self.streaming_data['total_chunks']} | Buffer: {buffer_seconds:.1f}s | Processed: {self.processor.processed_length/self.processor.sample_rate:.1f}s"
# Move to next chunk
self.streaming_data['chunk_index'] += 1
# Check if this was the last chunk
if self.streaming_data['chunk_index'] >= self.streaming_data['total_chunks']:
print(f"✅ All {self.streaming_data['total_chunks']} chunks processed!")
return status, str(transcription), llm_response
except Exception as e:
self.streaming_data['active'] = False
return f"Streaming error: {e}", "", ""
def is_active(self) -> bool:
"""Check if streaming is currently active"""
return self.streaming_data['active']
def get_streaming_data(self) -> Dict[str, Any]:
"""Get current streaming data"""
return self.streaming_data.copy()
def create_streaming_interface(streaming_manager: StreamingManager) -> Dict[str, Any]:
"""Create Gradio interface components for streaming functionality"""
with gr.Row():
test_audio_file = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio File for Testing")
with gr.Row():
test_stream_btn = gr.Button("🎵 Start Streaming Test", variant="primary")
test_stop_btn = gr.Button("⏹️ Stop Streaming", variant="stop")
with gr.Row():
test_status = gr.Textbox(label="Streaming Status", interactive=False, placeholder="Upload an audio file and click 'Start Streaming Test'")
with gr.Row():
with gr.Column():
transcription_output = gr.Textbox(label="Live Transcription", lines=5, interactive=False)
with gr.Column():
llm_output = gr.Textbox(label="LLM Response", lines=5, interactive=False)
# Timer for streaming updates (every 0.5 seconds)
streaming_timer = gr.Timer(value=0.5, active=False)
# Event handlers
def start_and_activate_timer(audio_file):
status, transcription, llm_response = streaming_manager.start_file_streaming_test(audio_file)
if streaming_manager.is_active():
return status, transcription, llm_response, gr.Timer(active=True)
else:
return status, transcription, llm_response, gr.Timer(active=False)
def stop_and_deactivate_timer():
status, transcription, llm_response = streaming_manager.stop_file_streaming_test()
return status, transcription, llm_response, gr.Timer(active=False)
def update_with_timer_control():
status, transcription, llm_response = streaming_manager.update_streaming_test()
# Keep timer active if still streaming
timer_active = streaming_manager.is_active()
return status, transcription, llm_response, gr.Timer(active=timer_active)
# Connect event handlers
test_stream_btn.click(
start_and_activate_timer,
inputs=[test_audio_file],
outputs=[test_status, transcription_output, llm_output, streaming_timer]
)
test_stop_btn.click(
stop_and_deactivate_timer,
outputs=[test_status, transcription_output, llm_output, streaming_timer]
)
# Timer tick updates with automatic deactivation when done
streaming_timer.tick(
update_with_timer_control,
outputs=[test_status, transcription_output, llm_output, streaming_timer]
)
return {
'test_audio_file': test_audio_file,
'test_stream_btn': test_stream_btn,
'test_stop_btn': test_stop_btn,
'test_status': test_status,
'transcription_output': transcription_output,
'llm_output': llm_output,
'streaming_timer': streaming_timer
}
|