Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import chainlit as cl
|
| 3 |
+
from dotenv import load_dotenv
|
| 4 |
+
|
| 5 |
+
# LangChain imports for retrieval and generation
|
| 6 |
+
from langchain.document_loaders import WebBaseLoader
|
| 7 |
+
from langchain.text_splitter import CharacterTextSplitter
|
| 8 |
+
from langchain.embeddings import OpenAIEmbeddings
|
| 9 |
+
from langchain.vectorstores import FAISS
|
| 10 |
+
from langchain.chains import RetrievalQA
|
| 11 |
+
from langchain.llms import OpenAI
|
| 12 |
+
|
| 13 |
+
# Load environment variables (e.g., OPENAI_API_KEY)
|
| 14 |
+
load_dotenv()
|
| 15 |
+
|
| 16 |
+
# Global variable to store our QA chain.
|
| 17 |
+
qa_chain = None
|
| 18 |
+
|
| 19 |
+
@cl.on_chat_start
|
| 20 |
+
async def start_chat():
|
| 21 |
+
"""
|
| 22 |
+
When the chat starts, load the document using WebBaseLoader, split it into chunks,
|
| 23 |
+
create embeddings, build a vector store, and finally initialize a RetrievalQA chain.
|
| 24 |
+
This chain will serve as the backend for our RAG system.
|
| 25 |
+
"""
|
| 26 |
+
global qa_chain
|
| 27 |
+
|
| 28 |
+
# URL to crawl (German Wikipedia page on Künstliche Intelligenz)
|
| 29 |
+
url = "https://de.wikipedia.org/wiki/K%C3%BCnstliche_Intelligenz"
|
| 30 |
+
|
| 31 |
+
# Retrieve the document from the webpage
|
| 32 |
+
loader = WebBaseLoader(url)
|
| 33 |
+
documents = loader.load() # returns a list of Document objects
|
| 34 |
+
|
| 35 |
+
# Split the document into manageable chunks for better retrieval
|
| 36 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 37 |
+
docs = text_splitter.split_documents(documents)
|
| 38 |
+
|
| 39 |
+
# Create embeddings (make sure your OPENAI_API_KEY is set in your environment)
|
| 40 |
+
embeddings = OpenAIEmbeddings()
|
| 41 |
+
|
| 42 |
+
# Build a vector store from the documents using FAISS
|
| 43 |
+
vectorstore = FAISS.from_documents(docs, embeddings)
|
| 44 |
+
|
| 45 |
+
# Configure the retriever: retrieve the top 3 most relevant chunks
|
| 46 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
| 47 |
+
|
| 48 |
+
# Set up the language model (using OpenAI LLM here) with desired parameters
|
| 49 |
+
llm = OpenAI(temperature=0)
|
| 50 |
+
|
| 51 |
+
# Create a RetrievalQA chain that first retrieves relevant context and then generates an answer.
|
| 52 |
+
qa_chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever)
|
| 53 |
+
|
| 54 |
+
await cl.Message(
|
| 55 |
+
content="✅ Document loaded and processed successfully! "
|
| 56 |
+
"You can now ask me questions about 'Künstliche Intelligenz'."
|
| 57 |
+
).send()
|
| 58 |
+
|
| 59 |
+
@cl.on_message
|
| 60 |
+
async def process_question(message: cl.Message):
|
| 61 |
+
"""
|
| 62 |
+
When a message is received, use the QA chain to process the query. The chain:
|
| 63 |
+
1. Retrieves relevant document chunks.
|
| 64 |
+
2. Augments your query with the retrieved context.
|
| 65 |
+
3. Generates an answer via the language model.
|
| 66 |
+
"""
|
| 67 |
+
global qa_chain
|
| 68 |
+
|
| 69 |
+
if qa_chain is None:
|
| 70 |
+
await cl.Message(content="❌ The document has not been loaded yet.").send()
|
| 71 |
+
return
|
| 72 |
+
|
| 73 |
+
# Get the user's query
|
| 74 |
+
query = message.content.strip()
|
| 75 |
+
|
| 76 |
+
# Process the query using the RetrievalQA chain
|
| 77 |
+
result = qa_chain.run(query)
|
| 78 |
+
|
| 79 |
+
# Send the answer back to the user
|
| 80 |
+
await cl.Message(content=result).send()
|